登录 EN

韩杰

教授    博士生导师    硕士生导师

个人信息 更多+
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 职称: 教授

我的新闻

当前位置: 中文主页 - 我的新闻

新书《融合ChatGPT进行科学研究与写作:初学者指南》由施普林格-自然 (Springer Nature) 正式出版

发布时间:2024-10-03
点击次数:
发布时间:
2024-10-03
文章标题:
新书《融合ChatGPT进行科学研究与写作:初学者指南》由施普林格-自然 (Springer Nature) 正式出版
内容:

《ChatGPT in Scientific Research and Writing: A Beginner's Guide》

译名:《融合ChatGPT进行科学研究与写作:初学者指南》

Springer Nature Switzerland AG 2024

 

该书由课题组本人、谷毅恒科技、外籍专家三方共同完成,历时11个月成稿。全书6万4千词,英文撰写,包含48个实用案例和作者短评。初学者可直接上手,无需编程、提示词工程基础。

 

该书目前已由施普林格-自然出版社(Springer Nature)正式出版。国际标准书号(ISBN): 978-3-031-66939-2(实体书)、978-3-031-66940-8(电子书)。

 

官网介绍(校内IP可直接下载):https://link.springer.com/book/10.1007/978-3-031-66940-8

 

出版社简介 | About this book:
Most scientists are constantly under pressure for reading essential literature, designing new experiments, writing successful proposals and papers, and meeting deadlines. However, imagine that your brain is connected to the entire human knowledge and can extract instantly essential information for discovery. Imagine that research tasks that took days to months can now be done within few seconds. This is not science fiction anymore since the onset of generative artificial intelligence tools such as ChatGPT. This book explains concisely and simply how to use ChatGPT for identifying new results, crafting titles, editing language, interpreting figures, creating visuals, and refining methods. ChatGPT even allows for brainstorming, designing experiments, writing proposals, responding to reviewers, and evaluating research papers. Written for researchers with no background in coding or prompt engineering, this book provides the skills necessary to navigate the changing landscape of scientific research. In particular, you will learn how to leverage ChatGPT’s unique capabilities to generate ideas, streamline literature reviews, and craft compelling narratives. In short, this book empowers you to unlock the potential of ChatGPT, boosting productivity, and take your scientific research and writing to new heights.

 

该书为课题组“数据科学”方向首个系统性成果:“Large language models(人工智能大语言模型)在实际科研工作过程中的应用开发与能力评价”。欢迎下载、阅读和批评指正!