杨卫卫

国际期刊论文

中文主页

 

Under review

[144] Advancing low-Pt catalyst layer design from multi-scale to cross-scale synergy optimization for high-performance and durable proton exchange membrane fuel cell.

[143] Synergistic N/S co-doping and hierarchical porosity engineering in graphite field for high-performance vanadium redox flow batteries.

[142] Enhancing hydrogen production from methane steam reforming using a palladium-based membrane reactor inserted with triple-helix structure

[141] Performance evaluation of multiple-parallel-channel serpentine-like flow fields for vanadium redox flow battery: simulation and experiment. 

[140] An adaptive 2D+1D multi-physics network model for fast and accurate simulation of metal hydride reactor: framework and verification.

[139] Topology optimization of heat transfer structure for a metal hydride reactor and its performance evalution.

 

2025年-

[138]W.W. Yang*, X.Y. Tang, X. Ma, X.K. Cao, Y.L. He, Synergistic Intensification of Palladium-based Membrane Reactors for Hydrogen Production: A review, Energy Conversion and Management, 325(2025)119424.

[137] J.C. Li, S.S. Xia, Z.B. Liu, L.D. Song, B.W. Zeng, X.Y. Tang, W.W.Yang*Y.L. He, A novel theoretical optical efficiency limit model guiding parameter design of solar power tower heliostat fields with pattern-free layout, Applied Energy, 401(2025)126804.

[136] X.Y. Tang, W.W. Yang*, J.C. Li, L.X. Liang, Y.W. Lin, Y. L. He, A new optimal design strategy for deformable petal heliostat field of concentrated solar power via multi-algorithm filtering, Renewable Energy, 243(2025)122612.

[135] X.Y. Tang, W.W. Yang*, J.R. Zhang, Y.W. Lin, W.X. Yang,  Stable and efficient hybrid controller of solar thermal membrane reactor based on machine learning and multi-objective optimization, Energy, 320(2025)135217.

[134] J.R. Zhang, Z. Liu, F. Xiao, W.X. Yang, W.W. Yang*, J.F. Zhang, Z.G. Qu*,  Analysis of oxygen transport and output performance of a proton exchange membrane fuel cell with order-stuctured catalyst layer using sobol global sensitivity method, Journal of Power Sources 659(2025)238395.

[133] Y.W. Lin, Z. Liu, L.D. Song,W.W.Yang*, J.F. Zhang, Z.G. Qu*, Data-driven optimization of PEMFC cold start strategies for safe operating boundary, Journal of Power Sources, 659(2025)238408. 

[132] L.X. Liang, J.C. Li, J.W. Su, W.W. Yang*, Q. Xu, Z.G. Qu*, ZIF-modified tailored multiscale-pore N-doped gaphite felt for high performance vanadium redox flow batteries, Journal of Energy Storage128(2025)117252.

[131]X. Ma, W.W. Yang*, J.R. Zhang, L.X. Liang, Dynamic Trapping of Co0.1Ce0.1Ni0.8 by Ti3C2 MXene/g-C3N4 Composite for Efficient and Ordered Energy Conversion in Photo-Thermal-Driven Methane Dry Reforming,  Renewable Energy, 255(2025)123836. 

[130] X. Ma, W.W. Yang*, J.R. Zhang, X.Y. Tang, Structural evolution of Ni-Ce bimetallic alloy on Al203 support in methane dry reforming: achieving  sustainability and high-efficiency reaction through cerium modulation strategy, Fuel, 384(2025)134084

[129] Z. Liu, W.W. Yang*, J.R. Zhang, Y.W. Lin, J.F. Zhang, Z.G. Qu*, Gradient catalyst layer design for low-Pt-loading PEM fuel cell based on artificial neural network and multi-objective optimization, International Journal of Hydrogen Energy, 141(2025)650-664.

[128] Z. Liu, W.W. Yang*, F. Xiao, L.D. Song, J.F. Zhang, Z.G. Qu*, Steady-state performance and dynamic response characteristics of a proton exchange membrane fuel cell with dual-gradient Pt distribution in catalyst layer, Journal of Power Sources, 650(2025)237499.

[127] J. W. Su, X.Y. Tang, X.S. Bai, W.W. Yang*, J.F. Zhang, Z.G. Qu*, Review on thermal design and thermal management for metal hydride reactors: current status and future development, International Journal of Hydrogen Energy, 114(2025)295-311.

[126] M.F. Li, Z. Liu, W.W. Yang*, Y.W. Lin, K.F. Ji, Z.Y. Jiang, Multi-objective optimization of hybrid battery thermal management design with considering thermal runaway propagation prevention, Applied Thermal Engineering, 269(2025)125990.

[125] Z.X. Gu, P. Lu, Z.H. Zhang, Q. Ma, Y.F. Bu, H.N. Su, L. Wei, W.W. Yang**, Q. Xu*,  Effectively enhancing the performance of solar flow battery via constructing TiO2-g-C3N4 heterojunction photoanode, Journal of Power Sources, 640(2025)236696.

[124]  K.L. Li,  Z.X. Gu, Y.Z. Qi, H.C. Zhu, M.Y. Lu, Z. Li, Q. Ma, H.N. Su, W.W.Yang*, Q.Xu*, Advancements in photoelectrode surface, electrolyte, and integrated configurations for solar redox flow batteries-A mini review, Future Batteries, 7(2025)100104. 

[123] P. He, Q.X. Zhang, Y.T. Mu*, Z.G. Qu*, J.Z. Yin, Z.A. Li, W.W. Yang, S.J. Cai, J.H. Chen, W.Q. Tao*, Experimental investigation on the impact of ambient temperature and current load rate on the cold start behavior of a short PEMFC stack, Applied Energy, 396(2025)126317.

[122] W. Gao, Z.G. Qu*, Z. Gao, J.F. Zhang, W.W. Yang, Multi-step numerical method for the hydrogen storage performance optimisation of metal hydride reactors, Journal of Energy Storage, 133(2025)118000.

 

2024年-

[121] W.W. Yang*, R.Z. Zhang, M.Y. Lu, Y.W. Lin, L.X. Liang, Q. Xu*, Novel flow field design for redox flow battery using algorithmic channel generation and self-adaptive network model and experimental verficiation, Chemical Engineering Journal, 499(2024)156346. 

[120] X. Ma, X.Y. Tang, W.W. Yang*, Y.L. He, Solar-driven methanol steam reforming for low carbon and efficient hydrogen production: A review, Journal of Cleaner Production, 436(2024)140587.   (入选ESI高被引论文)

[119] X.Y. Tang, W.W. Yang*, X. Ma, Y.L. He, Bionic Leaf-inspired Catalyst Bed Structure for Solar Membrane Reactor Aiming at Efficient Hydrogen Production and Separation, Applied Energy, 355(2024)122281. 

[118] X. Ma, W.W. Yang*, J.W. Su, L.X. Liang, W.X. Yang, Y.L. He, Enhancing carbon dioxide conversion in methane dry reforming multistep reactions through transformation of active species on catalyst surface, Energy, 290(2024)130279.

[117] X.S. Bai, J.W. Su, Z. Liu, Z.G. Qu, W.W. Yang*, Heat Transfer optimization for MH reactor using combined Taguchi design and data-driven optimization method, Energy, 307(2024)132689.  

[116] J.C. Li, M.Y. Lu, W.W. Yang*, R.Z. Zhang, J.W. Su, Q. Xu, Development of high-performance and ultra-stability hierarchical nested-network-pore carbon electrode for vanadium redox flow batteries, Journal of Energy Storage, 97(2024)112987 

[115] R.Z. Zhang, M.Y. Lu, W.W. Yang*, L.X. Liang, Q. Xu, Validation of 3D Multi-physics Equivalent Resistance Network Model with Flow Field Feature for VRFB Stack and Battery Scale-up Analysis, Journal of Energy Storage, 90(2024)111768. 

[114] K.R. Zhang, X.Y. Tang, W.W. Yang*, J.C. Li, R.Z. Zhang, Back propagation neural network based proportional-integral hybrid control strategy for a solar methane reforming reactor, International Journal of Hydrogen Energy, 49(2024)1258-1271. 

[113] Y.J. Yang, Z. Liu, R.Z. Zhang, J.R. Zhang, X. Ma, W.W. Yang*, Design optimization of a molten-salt heated methane/steam reforming membrane reactor by universal design analysis and techno-economic assessment, International Journal of Hydrogen Energy, 69(2024)1236-1245. 

[112] X.Y. Tang, W.W. Yang*, Z. Liu, J.C. Li, X. Ma, Deep learning performance prediction of solar-thermal-driven hydrogen production membrane reactor via Bayesian optimized LSTM network, International Journal of Hydrogen Energy, 82(2024)1402-1412.

[111] X. Ma, X.Y. Tang, W.W. Yang*, Y.L. He, Efficient catalysis and products regulation of methane dry reforming under mild temperature conditions using novel high-entropy catalyst, Fuel, 372(2024)132263.     

[110] L. Rong, X.S. Bai, J.C. Li, R.Z. Zhang, W.W. Yang*, Design and optimization of a hybrid cooling configuration combining PCM and liquid cooling for Li-ion battery uing data-based response surface approximation model, Applied Thermal Engineering, 245(2024)122844.

[109] X.S. Bai, X. Ma, W.W. Yang*, R.Z. Zhang, F.S. Yang, Modification of heat transfer concentrating model for the effective heat conductivity of particle beds within the full range of heat conductivity ratio, Powder Technology, 431(2024)119050.

[108]  C. Yin, M.Y. Lu*, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, A comprehensive flow-mass-thermal-electrochemical coupling model for VRFB stack and its application in stack temperature control strategy, Batteries, 10(2024)347.

[107] H.C. Zhu, C. Yin, M.Y. Lu, Z. Li, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, A critical review on operating paramter monitoring/estimation, battery management and control system for redox flow batteries, Journal of Energy Storage, 102(2024)114029.

[106] M.Y. Lu, Y. Chen, Q. Ma, H.N. Su, Q. Lu, Z.Q. Dai, W.W. Yang*, Q. Xu*, Flow field structure design for vanadium redox flow battery: Developments and Prospects, Journal of Energy Storage, 95(2024)112303.  

 

2023年-
[105] X.Y. Tang, W.W. Yang*, X. Ma, Y.L. He, Synergistic enhancement of reaction and separation for a solar membrane reactor by topolopy optimization of catalyst bed, Chemical Engineering Journal, 472(2023)145123. 

[104] W.W. Yang*, X.Y. Tang, X. Ma, Y.J. Yang, P.Y. Dou, Y.L. He, Theoretical analysis of a solar membrane reactor with enhanced mass transfer by using helical inserts, Energy Conversion and Management, 283(2023)116885. 

[103] W.W. Yang*, X. Ma, X.Y. Tang, P.Y. Dou, Y.J. Yang, Y.L. He, Review on developments of catalytic system for methanol steam reforming from the perspective of energy mass conversion, Fuel, 345(2023)128234.   

[102] W.W. Yang*, X.Y. Tang, X. Ma, J.C. Li, C. Xu, Y.L. He, Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model, Energy, 285(2023)129432. 

[101]X.S. Bai, L. Rong, W.W. Yang*, F.S. Yang, Effective thermal conductivity of metal hydride bed: theoretical model and experimental validation, Energy, 48(2023)127085.

[100] Z.K. Zhang, M.Y. Lu, W.W. Yang*, J. C. Li, Q. Xu*, Design of parallel double-chain fibrous electrode using electrospinning technique for vanadium redox flow battery with boosted performance, Electrochimica Acta, 469(2023)143219. 

[99] X.Y. Tang, W.W. Yang*, X.Ma, X.K. Cao, An integrated modeling method for membrane reactors and optimization study of operating conditions, Energy, 268(2023)126730.

[98] X.Y. Tang, K.R. Zhang, W.W. Yang*, P.Y. Dou, Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution, Energy, 263(2023) 125828.

[97] T. Zhang, X.Y. Tang, W.W. Yang*, X. Ma, Comprehensive performance study on novel reflux solar methanol steam reforming reactor for hydrogen production, International Journal of Hydrogen Energy, 48(2023)879-893. 

[96] Y.J. Yang, W.W. Yang*, X. Ma, X.Y. Tang, X.K. Cao, Performance improvement of a solar volumetric reactor with passive thermal management under different solar radiation conditions, International Journal of Hydrogen Energy, 48(2023)20193-20207.

[95] W.W. Yang*, Y.J. Yang, X.Y. Tang, K.R. Zhang, J.C. Li, C. Xu, An adaptive P/PI control strategy for a solar volumetric methane/steam reforming reactor with passive thermal management, Chemical Engineering Science, 281(2023)119005.

[94] P.Y. Dou, W.W. Yang*, X.Y. Tang, X. Ma, J.C. Li, Topology optimization of catalysts porosity distribution in a solar steam methane reforming reactor towards improved methane conversion and hydrogen yield, Chemical Engineering Science, 281(2023)119200.

[93] P.Y. Dou, X.Y. Tang, W.W. Yang*, Y.L. He, Design of a multi-inlet solar thermochemical reactor for steam methane reforming with improved performance. Energy Storage and Saving, 2(2023)403-414.

[92] M. Ye, L. Rong, X. Ma, W.W. Yang*, Numerical optimization of triple-phase components in order-structured cathode catalyst layer of a proton exchange membrane fuel cell, Energies, 16(2023)1623. 

[91] Z.Q. Dai, X. Ma, X.Y. Tang, R.Z. Zhang, W.W. Yang*, Solar-thermal-chemical integrated design of a cavity-type solar-driven methane dry reforming reactor, Energies, 16(2023)2781.

[90] H.T. Hou, R.P. Yang, Q. Ma, Z. Li, H.N. Su, P. Lu, W.W. Yang*, Q. Xu*, Modeling and simulation of non-aqueous redox flow batteries: A mini-review, Batteries, 9(2023)215.  

[89] R.P. Zhang, H.T. Zhou, Q. Ma, Z. Li, M.Y. Lu, H.N. Su, W.W. Yang*, Q. Xu*, Numerical optimization of magnetic field application scheme for deep eutectic solvent electrolyte flow battery, Journal of Power Sources, 586(2023)233683.

 

2022年-

[88] X.S. Bai, W.W. Yang*, Y.J. Yang, K.R. Zhang, F.S. Yang, Multi-variable optimization of metal hydride hydrogen storage reactor with gradient porosity metal foam and evaluation of comprehensive performance, International Journal of Hydrogen Energy, 47(2022) 35340-35351.

[87] Z.Q. Dai, Y.J. Yang, X.Y. Tang, L. Rong, W.W. Yang*, A thermochemical reactor design with better temperature management and improved performance for methane/carbon dioxide dry reforming,  International Journal of Hydrogen Energy, 47(2022)34794-34809.

[86] M.Y. Lu, W.W. Yang*, Z.K. Zhang, Y.J. Yang, Q. Xu, Lead-modified graphite felt electrode with improved VO2+/VO2+ electrochemical activity for vanadium redox flow battery, Electrochimica Acta, 428(2022)140900.

[85] X.Y. Tang, P.Y. Dou, Z. Q. Dai, W.W. Yang*, Structural design and analysis of a solar thermochemical reactor partially filled with phase change material based on shape optimization, Solar Energy, 236(2022)613-625.

[84] X.Y. Tang, W.W. Yang*, Z.Q. Dai, Y.J. Yang, Inverse design of local solar flux distribution for a solar methanol reforming reactor based on shape optimization, Frontier in Energy Research, 10(2022)881822.

[83] W.Y. Zhang, W.W. Yang*, Y.H. Jiao, D.W. Zhang, Numerical study of periodical cosine vibration effects on the heat transfer and fluid flow of internal turbulent flow, International Journal of Thermal Science, 173(2022)107367.

[82] Y. H. Jiao, M.Y. Lu, W.W. Yang*, X.Y. Tang, M. Ye, Q. Xu, A 3D macro-segment network model for vanadium redox flow battery with serpentine flow field, Electrochimica Acta, 403(2022)139657.

[81] Y.H. Jiao, Z.K. Zhang, P. Y. Dou, Q. Xu, W.W. Yang*, Consistency analysis and resistance network design for vanadium redox flow battery stacks with a cell-resolved model, International Journal of Green Energy, 19(2022)2023885.

[80] X.S. Bai, W.W. Yang*, X. Y. Tang, Z.Q. Dai, F.S. Yang, Parametric optimization of fin-metal foam composite metal hydride bed towards enhanced absorption performance of metal hydride hydrogen storage device, Energy, 243(2022)123044.

[79] P. Lu, P.Z.  Sun, Q. Ma, H.N. Su, P. Leung, W.W. Yang*, Q. Xu*, Rationally designed ternary deep eutectiv solvent enabling higher performance for non-aqueous redox flow batteries. Processes, 10(2022)649. 

[78] P.Z. Sun, R.P. Zhang, H.T. Zhou, Q. Ma, W.Q. Zhang, H.N. Su, W.W. Yang*, Q. Xu*, Effect of external ultrasonic field on the performance of an iron-vanadium flow battery with non-aqueous deep eutectic solvent (DES) electrolyte, International Journal of Energy Research, 46(2022)1-14.

[77] R.P. Zhang, H.T. Zhou, P.Z. Sun, Q. Ma, M.Y. Lu, H.N. Su, W.W. Yang*, Q. Xu*, Research progress on nanaparicles applied in redox flow batteries (RFBs), Battery Energy, 2022,1:20220023. 

 

2021年-

[76] X.S. Bai, W.W. Yang*, X.Y. Tang, F.S. Yang, Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study, Energy, 220(2021)119738.

[71] M.Y. Lu, Y.H. Jiao, X.Y. Tang, W.W. Yang*, M. Ye, Q. Xu, Blocked serpentine flow field with enhanced species transport and improved flow distribution for vanadium redox flow battery, Journal of Energy Storage, 35(2021)102284.

[75] M.Y. Lu, W.W. Yang*, X.Y. Tang, Y.H. Jiao, M. Ye, Q. Xu,  Asymmetric structure design of a vanadium redox flow battery for improved battery performance, Journal of Energy Storage, 44(2021)103337. 

[74] X.Y. Tang, W.W. Yang*,Y. Yang, Y.H. Jiao, T. Zhang, A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution,  Energy, 229(2021)120749.

[73] X.S. Bai, W.W. Yang*, X.Y. Tang, F.S. Yang et al., Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels, Energy, 232(2021)121101.

[72] P. Lu, P. Leung, H.N. Su, W.W. Yang*, Q. Xu*, Materials, performance, and system design for integrated solar flow batteries-A mini review, Applied Energy, 282(2021)116210.

[71] J. C Xu, R. Cheng, J. J. Zhang, P. Leung, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, Facile segmented graphite felt electrode for iron-vanadium redox flow batteries with deep eutectic solvent (DES) electrolyte, Journal of Power Sources, 483(2021) 229200.

[70] P.Z. Sun, J.C. Xu, Q. Ma, W.Q. Zhang, A.A. Shah, H.N. Su, W.W. Yang*, Q. Xu*, The influence and control of ultrasonic on the transport and electrochemical properties of redox couple ions in deep eutectic solvent(DES) for redox flow battery application, Electrochimica Acta, 394(2021) 139140.

[69] R. Cheng, P.Z Sun, H.N. Su, W.W. Yang, P. Leung, Q. Xu*, Effect of exerted magnetic field on the performance of non-aqueous iron-vanadium redox flow battery with deep eutectic solvent (DES) electrolyte, Electrochimica Acta, 399(2021)139404.

 

2020年及以前

[68] W.W. Yang*, X.S. Bai, W.Y. Zhang, M.Y. Lu, Q. Xu, Numerical Examination of the Performance of a Vanadium Redox Flow Battery under Variable Operating Strategies, Journal of Power Sources, 457(2020)228002.

[67] M.Y. Lu, W.W. Yang*, Y.M. Deng, Q. Xu, An optimal electrolyte addition strategy for improving performance of a vanadium redox flow battery, International Journal of Energy Research, 44(2020)2604-2616.

[66] X.S. Bai, W.W. Yang*, W.Y. Zhang, F.S. Yang, X.Y. Tang, Hydrogen absorption performance of a novel cylindrical MH reactor with combined loop-type finned tube and jacket cooling system, Int. J. Hydrogen Energy, 45(2020)28100-28115.

[65] W.Z. Li, W.W. Yang*, N. Wang, Y.H. Jiao, Y. Yang, Z.G. Qu, Optimization of the Blocked Channel Design for a Proton Exchange Membrane Fuel Cell by Coupled Genetic Algorithm and Three-dimensional CFD modeling, Int. J. Hydrogen Energy, 45(2020)17759-17770.

[64] M.Y. Lu, Y.M. Deng, W.W. Yang*, M. Ye, Y.H. Jiao, Q. Xu, A Novel Rotary Serpentine Flow Field with Improved Electrolyte Penetration and Species Distribution for Vanadium Redox Flow Battery, Electrochimica Acta, 361(2020) 137089.

[63] J.C. Xu, Q. Ma, L. Xing , H.H. Li , P.K. Leung, W.W. Yang*, H.N. Su, Q. Xu*, Modeling the effect of temperature on performance of an iron-vanadium redox flow battery with deep eutectic solvent (DES) electrolyte, Journal of Power Sources, 449(2020) 227491.

[62] P. Lu, L.Y. Qin, P. Balakrishnan, Q.Ma, H.N. Su, W.W.Yang*, Q.Xu* The effect of additive supporting electrolytes on transport and electrochemical properties of deep eutectic solvent (DES) applied in non-aqueous redox flow batteries, Ionics, 26(2020) 5029-5036.

[61] R. Cheng, J.C. Xu, X.Y. Wang, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, Electrochemical characteristics and transport properties of V(II)/V(III) redox couple  in a deep eutectic  solvent: Magnetic field effect ,  Frontiers in Chemistry,  8(2020)619. 

[60] Q. Ma, L. Xing, H.N Su, W.Q. Zhang, W.W. Yang, Q. Xu*, Numerical investigation on the dispersion effect in VRFBs, Chemical Engineering Journal, 2020, 393(1)124753.

[59] Q. Ma, L.J. Zhao, J.C. Xu, H.N. Su, W.Q. Zhang, W.W. Yang, Q. Xu, Pore-scale investigation of reactive transfer process in a deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery, Electrochimica Acta, 353(2020)136486.

[58] M.Y. Lu, W.W. Yang*, Y.M. Deng, W.Z. Li, Q. Xu*, Y.L. He, Mitigating Capacity Decay and Improving Charge-Discharge Performance of a Vanadium Redox Flow Battery with Asymmetric Operating Conditions, Electrochimica Acta, 2019(309)283-299.

[57] W.Z. Li, W.W. Yang*, W.Y. Zhang, Z.G. Qu, Y.L. He, Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation, Int. J. Hydrogen Energy, 44 (2019) 22194-22209.

[56] M.Y. Lu, W.W. Yang*, X.S. Bai, Y.M. Deng, Y.L. He, Performance improvement of a vanadium redox flow battery with asymmetric electrode designs, Electrochimica Acta, 319 (2019) 210-226. 

[55] Q. Xu*, L.Y. Qin, Y.N. Ji, P.K. Leung, H.N. Su, F. Qiao, W.W. Yang*, A.A. Shah, H.M. Li, A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability, Electrochimica Acta, 293 (2019) 426-431.

[54] J.F. Zhang, L. Jia, W.W. Yang, J. Taler, P. Oclon, Numerical analysis and parametric optimization on flow and heat transfer of a microchannel with longitudinal vortex generators, International Journal of Thermal Science, 141(2019) 211-221.

[53] J.H. Jiang, Y.S. Li, J.R. Liang, W.W. Yang, X.L. Li. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Applied Energy 252 (2019) 113431.

[52] D.W. Zhang, E.H. Jiang, C. Shen, J.J. Zhou, W.W. Yang, Y.L. He, Numerical analysis on thermoacoustic prime mover, Journal of Sound and Vibration, 463(2019) 114946.

[51] W.W. Yang*, F.Y. Yan, Z.G. Qu, Y.L. He, Effect of Various Strategies of Soc-dependent Operating Current on Performance of a Vanadium Redox Flow Battery, Electrochimica Acta, 259 (2018)772-782.

[50] Z. Ma, M.J. Li, W.W. Yang *, Y.L. He, General performance evaluation charts and effectiveness correlations for the design of thermocline heat storage system, Chemical Engineering Science, 185(2018)105-115.

[49] Z. Ma, W.W. Yang, M.J. Li, Y.L. He, High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions, Applied Energy, 230(2018)769-783.  

[48] Q. Wang, Z.G. Qu*, Z.Y. Jiang, W.W. Yang*, Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode, Applied Energy, 213(2018)293-305. 

[47] Q. Wang, Z.G. Qu*, Z.Y. Jiang, W.W. Yang*, Numerical study on vanadium redox flow battery performance with non-uniform compressed electrode and serpentine flow field, Applied Energy, 220(2018) 106-116. 

[46] S. Du, Y.L. He, W.W. Yang, Z.B. Liu, Optimization method for the porous volumetric solar receiver coupling genetic algorithm and heat transfer analysis, Int. J. Heat Mass Transfer, 1222018383-390.

[45] Y.P. Zhou, M.J. Li, W.W. Yang, Y.L. He, The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process, Applied Energy, 213(2018): 169-178.

[44] W.W. Yang*, X.Q. Cao, Y.L. He, F.Y. Yan, Theoretical study of a high-temperature heat pump system composed of a CO2 transcritical heat pump cycle and a R152a subcritical heat pump cycle, Applied Thermal Engineering, 120(2017)228-238.

[43] Z. Ma, W.W. Yang*, F. Yuan, B. Jin, Y.L. He*, Investigation on the thermal performance of a high-temperature latent heat storage system, Applied Thermal Engineering, 122 (2017) 579-592.

[42] W.W. Yang*, M. Y. Lu, Y.L. He, Performance study of an alkaline direct ethanol fuel cell with a reduced two-dimensional mass transport model, Int. J. Hydrogen Energy, 2016. 41(45):20693-20708.

[41] W.W. Yang*, Y.L. He, Y.S. Li, Performance Modeling of a Vanadium Redox Flow Battery during Discharging, Electrochimica Acta 155 (2015) 279-287.

[40] Y. Wang, Y.L. He, W.W. Yang, Z.D. Cheng, Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow, Int. J. Heat and Mass Transfer, 82 (2015)51-65.

[39] Y.S. Li, Y.L. He, W.W. Yang, A high-performance direct formate-peroxide fuel cell with palladium-gold alloy coated foam electrode, J. Power Sources, 278(2015)569-573.

[38] X.Q. Cao, W.W. Yang*, Y. L. He, F. Zhou, Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery, Applied Thermal Engineering, 71(2014)291–300.

[37] Y.L. He, D.W. Zhang, W.W. Yang et al, Numerical analysis on performance and contaminated failures of the miniature split Stirling cryocooler, Cryogenics, 59(2014)12-22.

[36] H. Xi, M.J. Li, Y.L. He, W.W. Yang, Y.S. Li, Parametric optimization of zeotropic mixtures used in low-temperature organic rankine cycle for power generation, Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, VOL3B(2014) V03BT26A008.

[35] D.W. Zhang, Y. L. He, W.W. Yang et al., Experimental visualization and heat transfer analysis of the oscillatory flow in thermoacoustic stacks, Experimental Thermal and Fluid Science, 46(2013) 221-231.

[34] D.W. Zhang, Y. L. He, W.W. Yang et al., Particle image velocimetry measurement on the oscillatory flow at the end of the thermoacoustic parallel stacks, Applied Thermal Engineering, 51 (2013)325-333. 

[33] Y.S. Li, Y.L. He, W.W. Yang, Performance characteristics of air-breathing anion exchange membrane direct ethanol fuel cellsInt. J. Hydrogen Energy, 38 (2013) 13427-13433.

[32] W.W. Yang, Y.L. He, Y.S. Li, Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell, Int. J. Hydrogen Energy, 37(2012) I8412-I8424.

[30] X.Y. Li, W.W. Yang, Y.L. He, T.S. Zhao, Z.G. Qu, Effect of anode micro-porous layer on species crossover through the membrane of the liquid-feed direct methanol fuel cells, Applied Thermal Engineering, 48(2012)392-401.

[29] Y.L. He, Z. Miao, W.W. Yang, Characteristics of heat and mass transport in a passive direct methanol fuel cell operated with concentrated methanol, Int. J. Hydrogen Energy, 208(2012)180-186.

[28] Y.L. He, Z. Miao, T.S. Zhao, W.W. Yang, Numerical study on the effects of the GDL structure on water crossover in a direct methanol fuel cell, Int. J. Hydrogen Energy, 37(2012) 4422-4438.

[27] Y.L. He, D. H. Mei, W. Q. Tao, W.W. Yang, H. L. Liu, Simulation of the parabolic trough solar energy generation system with organic Rankine cycle, Applied energy, 97(2012)630-641.

[26] W.W. Yang, T.S. Zhao, Q.X. Wu, Modeling of a passive direct methanol fuel cell operating with neat methanol, Int. J. Hydrogen Energy 36 (2011) 6899-6913.

[25] Q. Xu, T.S. Zhao, W.W. Yang, R. Chen, A flow field enabling operating direct methanol fuel cells with highly concentrated methanol, Int. J. Hydrogen Energy, 36 (2011) 6899-6913.

[24] Q.X. Wu, T.S. Zhao, W.W. Yang, Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol, Int. J. Heat & Mass Tran. 54 (2011) 1132-1143.

[23] Y.S. Li, T.S. Zhao, J.B. Xu, S.Y. Shen, W.W. Yang, Effect of the cathode micro-porous layer on performance of anion-exchange membrane direct ethanol fuel cells, J. Power Sources, 196(2011)1802-1807.

[22] T.S. Zhao*, W.W. Yang, R. Chen, C. Xu, Toward operating direct methanol fuel cells with highly-concentrated fuel,  J.  Power Sources 195 (2010) 3451.  (曾入选ESI高被引论文)

[21] Y.S. Li, T.S. Zhao, W.W. Yang, Measurements of water uptake and transport properties in anion-exchange membranes, Int. J. Hydrogen Energy 35 (2010) 5656-5665.

[20] J.B. Xu, T.S. Zhao, W.W. Yang, S.Y. Shen, Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells, Int. J. Hydrogen Energy 35 (2010) 8699-8706.

[19] J.B. Xu, T.S. Zhao, Y.S. Li, W.W. Yang, Synthesis and characterization of the au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells, Int. J. Hydrogen Energy 35 (2010) 9693-9700.

[18] E.D. Wang, T.S. Zhao, W.W. Yang, Poly (vinylalcohol)/3- (trimethylammonium) propyl- functionalized silica hybrid membranes for alkaline direct ethanol fuel cells,” International Journal of Hydrogen Energy 35 (2010) 2183-2189.

[17] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, Microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels, J. Micromech. Microeng. 20 (2010) 045014.

[16] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol, Int. J. Hydrogen Energy 35(2010) 10547-10555.

[15] W.W. Yang, T.S. Zhao, Numerical investigations of the effect of the membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell, J. Power Sources 188 (2009) 433–446.

[14] W.W. Yang, T.S. Zhao, An approach for determining the liquid water distribution in a liquid-feed direct methanol fuel cell, J. Power Sources 190 (2009) 216–222.

[13] T.S. Zhao*, R. Chen, W.W. Yang, C. Xu, Small direct methanol fuel cells with passive supply of reactants, J. Power Sources 191 (2009) 185-202. (曾入选ESI高被引论文)

[12] T.S. Zhao*, C. Xu, R. Chen, W.W. Yang, Mass transport phenomena in direct methanol fuel cells, Progress in Energy and Combustion Science 35 (2009) 275-292. (曾入选ESI高被引论文)

[11] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, Effects of anode micro porous layers made of carbon powder and nanotubes on water transport in direct methanol fuel cells, J. Power Sources 191 (2009) 304-311.

[10] W.W. Yang, T.S. Zhao, Y.L. He, Modeling of coupled electron and mass transport in anisotropic PEM fuel cell electrodes, J. Power Sources 185 (2008) 765-775.

[9] W.W. Yang, T.S. Zhao, A transient two-phase mass transport model for liquid feed direct methanol fuel cells, J. Power Sources 85 (2008) 1131-1140.

[8] R. Chen, T.S. Zhao, W.W. Yang, C. Xu, Two-dimensional two-phase thermal model for passive DMFCs, J. Power Sources 175 (2008) 276-287.

[7] C. Xu, T.S. Zhao, W.W. Yang, Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells, J. Power Sources 178 (2008) 291-308.  (曾入选ESI高被引论文)

[6] W.W. Yang, T.S. Zhao, A two-dimensional, two-phase mass transport model for liquid-feed DMFCs, Electrochimica Acta 52 (2007) 6125-6140.

[5] W.W. Yang, T.S. Zhao, Two-phase mass transport model for DMFCs with the effect of non-equilibrium evaporation and condensation, J. Power Sources 174 (2007) 136-147.

[4] W.W. Yang, T.S. Zhao, C. Xu, Three-dimensional two-phase mass transport model for direct methanol fuel cells, Electrochimica Acta.53 (2007) 853-862.

[3] C.Y. Du, T.S. Zhao, W.W. Yang, Effect of Methanol Crossover on the Cathode Behavior of a DMFC: A Half-Cell Investigation, Electrochimica Acta 52(2007) 5266-5271.

[2] Y.L. He, C.F. Zhao, W.J. Ding, W.W. Yang, Two-dimensional numerical simulation and performance analysis of tapered pulse tube refrigerator, Applied Thermal Engineering, 27 (2007)1876-1882.

[1] Y.L. He, W.W. Yang, W.Q. Tao, Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure, Numerical Heat Transfer Part A: Applications 47(2005) 917-934.