• English
  • 登录

黄佐华

教授 博士生导师 硕士生导师

个人信息 更多+
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 职称: 教授

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Network topology of turbulent premixed Bunsen flame at elevated pressure and turbulence intensity (PDF)

发布时间:2025-04-30
点击次数:
发布时间:
2025-04-30
论文名称:
Network topology of turbulent premixed Bunsen flame at elevated pressure and turbulence intensity (PDF)
发表刊物:
Aerospace Sci Technol
摘要:
For turbulent premixed flame surface, folded regions will be formed mainly depending on the turbulence-flame interaction and are significant structures which can increase flame surface area at large scale and enhance the local displacement speed. The conventional methods, such as PDF distribution of curvature, may not properly label the folded regions of turbulent flame because these regions intrude deeply into the products, resulting in a small curvature probability. This problem may be aggravated at elevated pressure and turbulence intensity conditions when more folded regions appear at the turbulent flame front. To identify the folded regions, Network topology of turbulent premixed flame front is constructed using the “visibility” method. Results show that this method can convert the spatial signal of turbulent flame to network topology, labeling the folded regions. Compared with curvature PDF, node degree distribution of network can reflect the mechanism of turbulence-flame interaction when the non-dimensional turbulence intensity is increased by different ways. The network structure of turbulent flame will transfer from sparse to condense when the dimensionless turbulence intensity is increased by pressure and perforated plate, as these two methods will extend the turbulence-flame interaction time and promote the interaction intensity, respectively. However, although the dimensionless turbulence intensity will increase with the augment of outlet velocity, the node degree distribution of network structure of turbulent flame front keeps almost constant. This is caused by the reduced turbulence-flame interaction time. It suggests that the turbulence-flame interaction time is an factor as important as the dimensionless turbulence intensity in turbulent premixed combustion. For forced-turbulent premixed flame at elevated turbulence intensity, the “bending phenomenon” will be hidden if the outlet velocity is not taken into account, as the outlet velocity is related to the turbulence-flame interaction time.
合写作者:
Wang JH, Nie YH, Zhang WJ, Guo SL, Zhang M, Huang ZH
卷号:
2019, 94, 105361
页面范围:
105361
是否译文:
发表时间:
2019-11-15