
主要经历
1997.09-2000.04 西安交大应用数学专业硕士研究生
2000.09-2004.08 西安交大工程力学专业博士研究生
2004.10-2006.11 西安交大数学流动站博士后
2006.12-2007.07 西安交大理学院讲师
2007.08-2014.12 西安交大数学与统计学院副教授
2010.08-2011.07
Visiting Research Scholar , Lab of Computational Biology, Warwick University, UK
2016.08.13-2016-10.27
Visiting Professor, Faculty of Science, The University of Sydney, AUS
2017.12-2018.2
Research fellow, Research centre of Chaos and Complexity, City University of HongKong, HK SAR
2014年12月至今 西安交大数学与统计学院教授
研究方向:应用随机动力系统及机器学习
欢迎报考硕士、博士研究生
教学经历
主讲课程:概率论与数理统计、生命科学模型及分析、数学建模能力提升课程、数学物理方程、数学建模、概率论
负责建设课程:随机微分方程
曾辅导课程:工科数学分析基础(I)、线性代数与空间解析几何
研究方向
1. 应用随机动力系统 (Applied Stochastic Dynamical Systems)
2. 反常扩散与分数阶模型 (Anomalous diffusion and its Fractional-order model)
3. 随机共振的理论及应用 (Theory and Application for Stochastic Resonance)
4. 复杂网络的临界动力学 (Critical Dynamics of Complex Networks)
5. 机器学习的概率统计方法 (Probalistic and Statistical Methods in Machine Learning)
科研项目:
1. 非线性随机振动系统的新型矩闭合方法及应用, 国家自然科学基金面上项目
执行年限: 2022年1月-2025年12月
2. 神经元突触输入的非泊松过程建模及皮层网络的临界动力学,国家自然科学基金面上项目
执行年限: 2018年1月-2021年12月
3. 具有分式结构的生化反应系统的随机响应方法及其在基因调控网络中的应用,国家自然科学基金面上项目
执行年限: 2014年1月-2017年12月
4. 反常扩散系统的响应理论及噪声诱导的非线性现象,国家自然科学基金面上项目,
执行年限:2011年1月-2013年12月
5. 非线性复杂统中随机共振现象的半解析方法,国家自然科学基金青年项目,
执行年限:2007年1月-2009年12月
6. 随机共振的半解析方法和控制策略,中国博士后科学基金,
执行年限:2006年1月-2006年12月
《国际应用数学进展》编委;
《Annals of Applied Science》编委;
《Mathematical Review》评论员;
中国工业与应用数学学会会员;
中国力学学会会员
主要学术论文与专利
[1] 康艳梅等. 基于生物神经元网络和随机共振的视觉感知方法及系统. 国家知识产权局授权,申请号或专利号:202111605009.1
[2] Ziheng Xu,Yuxuan Fu, Ruofeng Mei, Yajie Zhai, Yanmei Kang. Novel classification algorithms inspired by firing rate stochastic resonance. Nonlinear Dyn (2025) 113:497–517
[3] Yamin Ding, Yanmei Kang, Jianwei Shen and Guanrong Chen. Moment evolution equations for rational random dynamical systems: an increment decomposition method. J. Phys. A: Math. Theor. 57 (2024) 455002 (21pp)
[4] Yamin Ding,Liming Cai and Yanmei Kang. Moment dynamics of oligomer formation in protein amyloid aggregation with secondary nucleation. AdvancesinContinuousandDiscreteModels (2024) 2024:25
[5] Ranran Wang, Yamin Ding, and Yanmei Kang. Approximate moment dynamic of stochastic resonance facilitating bistable energy harvesting systems. 2024 Eur. Phys. J. Spec. Top. https://doi.org/10.1140/epjs/s11734-024-01204-4
[6] Yaqian Chen, Hiroya Nakao, Yanmei Kang. Emergence of pathological beta oscillation and its uncertainty quantification in a time-delayed feedback Parkinsonian model. Chaos, Solitons and Fractals 185 (2024) 115113
[7] Ruonan Liu, Yanmei Kang. Moment dynamics for stochastic resonance in active rotator systems. Chaos, Solitons & Fractals: X 12(2024) 100108.
[8] Muhammad Bilal Ghori, Yanmei Kang. Uncertainty quantification and sensitivity analysis of a hippocampal CA3 pyramidal neuron model under electromagnetic induction. Nonlinear Dyn (2023) 111:13457–13479
[9] Yajie Zhai, Yuxuan Fu, and Yanmei Kang. Incipient Bearing Fault Diagnosis Based on the Two-State Theory for Stochastic Resonance Systems. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023 3508011
[10] Ziheng Xu, Yajie Zhai and Yanmei Kang. Mutual information measure of visual perception based on noisy spiking neural networks. Front. Neurosci. 2023, 17:1155362
[11] Yamin Ding, Yanmei Kang and Yajie Zhai. Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023 3510812
[12] 徐子恒,何玉珠,康艳梅. 基于随机放电神经元网络的彩色图像感知研究. 物理学报 71(2022) 070501
[13] Yanmei Kang, Yuxuan Fu and Yaqian Chen. Signal-to-noise gain of an adaptive neuron model with Gamma renewal synaptic input. Acta Mechanica Sinica 38(2022) 521347
[14] Muhammad Bilal Ghori, Yanmei Kang and Yaqian Chen. Emergence of stochastic resonance in a two-compartment hippocampal pyramidal neuron model. Journal of Computational Neuroscience 50(2022) 217-240
[15] Yuzhu He, Yuxuan Fu, Zijian Qiao, Yanmei Kang. Chaotic resonance in a fractional-order oscillator system with application to mechanical fault diagnosis. Chaos, Solitons and Fractals 142 (2021) 110536
[16] Kang Yanmei, Liu Ruonan, Mao Xuerong. Aperiodic stochastic resonance in neural processing with colored Gaussian noise. Cognitive Neurodynamics, Cognitive Neurodynamics (2021) 15:517–532
[17]Yamin Ding, Yuxuan Fu, and Yanmei Kang. Stochastic analysis of COVID-19 by a SEIR model with Lévy noise. Chaos 31, 043132 (2021)
[18] Fengyin Gao, Yanmei Kang. Positive role of fractional Gaussian noise in FitzHugh–Nagumo neuron model. Chaos, Solitons & Fractals Volume 146, May 2021, 110914
[19] Yuxuan Fu, Yanmei Kang and Ruonan Liu. Novel bearing fault diagnosis algorithm based on the method of moments for stochastic resonant systems. IEEE Transactions on Instrumentation & Measurement Vol 70 Art 6500610, 2021 DOI: 10.1109//TIM.2020.3017857
[20] Kang Yanmei, Liu Ruonan. Moment dynamics for gene regulation with rational rate laws. Physical Review E 102, 042407,2020
[21] Yaqian Chen, Junsong Wang, Yanmei Kang, and Muhammad Bilal Ghori. Emergence of Beta Oscillations in a Resonance Model for Parkinson’s Disease. Neural Plasticity Vol 2020, Art ID 8824760, 15 page
[22] Ruonan Liu, Yanmei Kang. Stochastic master equation for early protein aggregation in the transthytin amyloid disease. Scientific Reports Vol. 10, Article number: 12437(2020) https://doaj.org/article/fdada9857a73460eb14fb984d9f8549b 本文被PNAS 2022 Vol. 119 No. 4 e2109750119引用
[23] Yuxuan Fu, Yanmei Kang, Guanrong Chen. Stochastic resonance based visual perception using spiking neural networks. Frontier in Computational Neuroscience Vol 14, Art 24, 2020. DOI: 10.3399//fncom.2020.00024 本文入选 Frontier in Computational Neuroscience 2021 Editors' Pciks
[1] Stochastic Resonance in Oscillatory and Neural Networks. International Symposium on Newest Development of Stochastic dynamical systems, October 26-28, 2018, Huaiyin Normal University, Huai’an, Jiangsu Province, China
[2]Some quantitative analytic results on stochastic gene regulatory systems. The 4th International Random Dynamical Systems. June-23-27, 2017, Huazhong University of Science and Technology, Wuhan, China
[3] The first passage time distribution of the noisy integrate-and-fire neuron with continous and discrete periodic input. The 5th International Conference on Cognitive Neurodynamics(ICCN 2015), June 3-7 2015, Sanya, China
[4] Application of Gaussian moment method to a simple gene regulation model of rational vector field. The 2015 International Conference on Noise and Fluctuations(ICNF2015), June 2-6 2015, Xi'an, China
[5] Enhancement of weak signal detection in parallel arrays of integrate-and-fire neurons by negative spatial correlation in H. Liljenstrom(ed.), Advances in Cognitive Neurodynamics (IV), Springer Science and Business Media Dordrechet 2015
[6] Stochastic Resonance in Neural Systems. Workshop on Life Science Modelling and Computation, Shanghai Jiaotong University, Shanghai, 2013 Dec. 27-29