• English
  • 登录

刘晓明

副教授 博士生导师 硕士生导师

个人信息 更多+
  • 电子邮箱:
  • 学历: 硕博连读
  • 学位: 博士
  • 职称: 副教授

会议论文

当前位置: 中文主页 - 学术研究 - 会议论文

​​​​​​

  1. Chengzhengxu Li, Xiaoming Liu, Zhaohan Zhang, Yichen Wang, Chen Liu, Yu Lan, Chao Shen. Concentrate Attention: Towards Domain-Generalizable Prompt Optimization for Language Models, NeurIPS 2024. (人工智能顶会,CCF A)
  2. Xiaoming Liu, Chen Liu, Zhaohan Zhang, Chengzhengxu Li, Longtian Wang, Yu Lan, Chao Shen. StablePT: Towards Stable Prompting for Few-shot Learning via Input Separation, EMNLP 2024.(自然语言处理顶会,CCF B)
  3. Wang, Yichen and Feng, Shangbin and Hou, Abe Bohan and Pu, Xiao and Shen, Chao and Liu, Xiaoming and Tsvetkov, Yulia and He, Tianxing. (2024). Stumbling Blocks: Stress Testing the Robustness of Machine-Generated Text Detectors Under Attacks. ACL 2024. (自然语言处理顶会,CCF A
  4. Liu, S., Liu, X*., Wang, Y., Cheng, Z., Li, C., Zhang, Z., ... & Shen, C. (2024). Does DetectGPT Fully Utilize Perturbation? Bridging Selective Perturbation to Fine-tuned Contrastive Learning Detector would be Better. ACL 2024. (自然语言处理顶会,CCF A
  5. Li, Chengzhengxu, Xiaoming Liu*, Yichen Wang, Duyi Li, Yu Lan, and Chao Shen. "Dialogue for Prompting: a Policy-Gradient-Based Discrete Prompt Optimization for Few-shot Learning." AAAI 2024 CCF A,Acceptance rate  23.75%[Paper] [Codes]
  6. Yichen Wang, Kevin Yang, Xiaoming Liu, Dan Klein. Improving Pacing in Long-Form Story Planning. EMNLP 2023 Findings. (自然语言处理顶会,CCF B)[Paper] [Codes]
  7. Xiaoming Liu*, Zhaohan Zhang*, Yichen Wang*, Hang Pu, Yu Lan, and Chao Shen. CoCo: Coherence-Enhanced Machine-Generated Text Detection Under Low Resource With Contrastive Learning. EMNLP 2023 Long Paper.(* All the authors contributed equally to this work,自然语言处理顶会,CCF B, Acceptance rate 21.3%[Paper] [Codes] [Data]
  8. Xiaoming Liu, Shaocong Wu, Zhaohan Zhang and Chao Shen, Unify Local and Global Information for Top-N Recommendation,  In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1262-1272. 2022. (CCF A, Full Paper, Accepted rate 161/794=20%)[Paper]   [Codes] 
  9. Li, Q.*, Liu, X.*, Shen, C., Peng, X., Zhou, Y. and Guan, X., 2020. Learning Graph Embedding with Limited Labeled Data: An Efficient Sampling Approach. arXiv preprint arXiv:2003.06100. (* Both authors contributed equally to this work)
  10. Liu, X., Shen, C., Fan, Y., Liu, X., Zhou, Y., & Guan, X. (2018, December). A Co-Evolutionary Model for Inferring Online Social Network User Behaviors. In 2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) (pp. 85-90). IEEE. (Best Student Paper Award)
  11.  Liu, X., Zhou, Y., Hu, C., Guan, X., & Leng, J. (2014, April). Detecting community structure for undirected big graphs based on random walks. In Proceedings of the 23rd International Conference on World Wide Web (pp. 1151-1156). (CCF A, Workshop on Big Graph Minng)
  12. Liu, X., Zhou, Y., Hu, C., Guan, X., & Sun, X. (2015, July). A feasible graph partition framework for random walks implemented by parallel computing in big graph. In 2015 34th Chinese Control Conference (CCC) (pp. 4986-4991). IEEE.