登录 EN

夏明岗

教授    博士生导师    硕士生导师

个人信息 更多+
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 职称: 教授

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Template-Free Gradient Selective Etching of Porous Carbon Nanospheres: Synergistic Dielectric Loss Optimization and Bifunctional Microwave Absorption-Corrosion Resistance Integration

发布时间:2026-01-30
点击次数:
发布时间:
2026-01-30
影响因子:
12.1
DOI码:
10.1002/smll.202507680
论文名称:
Template-Free Gradient Selective Etching of Porous Carbon Nanospheres: Synergistic Dielectric Loss Optimization and Bifunctional Microwave Absorption-Corrosion Resistance Integration
发表刊物:
Small
摘要:
The development of microwave-absorbing coatings for saline environments confronts dual challenges: dielectric loss optimization and porous carbon corrosion resistance. A solvent-mediated dynamic etching strategy achieving dual structural synergy is proposed. Acetone-regulated pore architecture enables template-free gradient etching, achieving tunable electromagnetic parameters and optimized absorption performance through pore size differentiation in nitrogen-doped 3D networks. In situ surface deoxygenation constructs hierarchical superhydrophobic micropores, decoupling pore topology from moisture adsorption. By bridging atomic-scale defect engineering and macroscopic interface optimization, a microstructure-mediated dielectric regulation paradigm is established. The optimized hollow porous carbon nanoparticles etched by 130 mL of acetone (HPCNs-130) demonstrate exceptional performance with -16.0 dB reflection loss at 2.78 mm thickness and 2.28 GHz bandwidth at 4.61 mm. Crucially, 48 h salt spray tests confirm superior corrosion resistance versus uncoated substrates. The coating significantly reduces the corrosion current from 25.44 to 0.53 mu A cm- 2, achieving a corrosion inhibition efficiency of 97.9%. This work proposes a novel solvent-mediated dynamic etching strategy, enabling template-free and gradient-controlled pore architecture, overcoming template-dependent structural limitations. By bridging atomic-scale defect engineering and macroscopic interface optimization, a structure-function synergy paradigm is demonstrated that concurrently addresses electromagnetic attenuation and electrochemical degradation, providing transformative solutions for marine infrastructure protection.
第一作者:
娄琦
论文类型:
期刊论文
通讯作者:
夏明岗
论文编号:
001573556600001
卷号:
21
期号:
44
ISSN号:
1613-6810
是否译文:
发表时间:
2025-09-25
收录刊物:
SCI、SCI