登录

何成

教授

基本信息 / Basic Information

  • 博士生导师 硕士生导师
  • 电子邮箱:
  • 学历: 硕博连读
  • 学位: 博士
  • 学科: 材料科学与工程

工作经历

当前位置: 中文主页 - 何成的个人主页空间 - 工作经历

主要论著

2025

  1. Y.M. Cheng, W. Chen, C. He*, W.X. Zhang* New insights into the long-range interaction mechanism of nitrogen reduction J Energy Chem., 106 (2025) 842. (中科院1区)
  2. W.X. Zhang, M.M. Nie, C. HeMachine Learning-Driven Band Alignment Strategy forScreening 1T-TMDs-Based Z-Scheme Heterostructures toward Efficient Photocatalytic Water Splitting Small 21(2025) 2504095(中科院2区)
  3. W.X. Zhang, S.R. Wang, C. He* New insights into axially asymmetric mechanism for enhanced anchoring and catalytic performance in lithium–sulfur batteries J Colloid Ineterf. Sci. 700 (2025) 138338.(中科院1区)
  4. C. He, D. Chen, S. Xi, W.X. Zhang* Aggregation and rebalance” mechanism-guided design and discovery of efficient bimetallic catalysts for the nitrogen reduction reaction J. Mater. Chem. A, (2025), 13, 16716 (中科院2区)
  5. W.X. Zhang, X. He, C. He*The "d-p orbital hybridization"-guided design of novel two-dimensional MOFs with high anchoring and catalytic capacities in Lithium- Sulfur batteries J Colloid Ineterf. Sci. 678 (2025) 540.(中科院1区)(ESI 1%)
  6. W.X. Zhang, S.L. Kong, W.W. Wang, Y.M. Cheng, Z. Li, C. He* Enhanced electrocatalytic performance of LCO-NiFe-C3N4 composite material for highly efficient overall water splitting J Colloid Ineterf. Sci. 6802025787.(中科院1区)
  7. W.X. Zhang, S.L. Kong, M.M. Nie, J.R. Wen, C. HeUnveiling the Ni–S synergy in 3D porous carbon-supported NiS nanoparticles for enhanced oxygen evolution International Journal of Hydrogen Energy 1592025150500  (中科院分区2区)

 2024年 

  1. C. He, D. Chen, W.X. Zhang* Machine learning-driven shortening the screening process towards high-performance nitrogen reduction reaction electrocatalysts with four-step screening strategy J Colloid Ineterf. Sci. 676 (2024) 22.(中科院1区)
  2. C. He, J.L Ma, W.X. Zhang* "Blocking and rebalance" mechanism-guided design strategies of bimetallic doped 2D α-phosphorus carbide as efficient catalysts for N2 electroreduction J Energy Chem., 97 (2024) 68.(中科院1区)(ESI 1%)
  3. C. He, S.Q. Yan, W.X. Zhang Design of novel transition-metal-doped C4N4 as highly effective electrocatalysts for nitrogen fixation with a new intrinsic descriptor J Energy Chem., 96 (2024) 437.(中科院1区)(ESI 1%) 热点论文
  4. S. Xi, P. Zhao, C. He*, W.X. Zhang*  High-throughput screening of single-atom catalysts on 1 T-TMD for highly active and selective CO2reduction reaction: Computational and machine learning insights JOURNAL OF CATALYS 436( 2024) 115610 (中科院1区)
  5. J.S. Zong, C. He*, W.X. Zhang* Ultrafast carrier recombination in a BC6N/SnXY Z-scheme heterostructure for water splitting: insights from ground- and excited-state carrier dynamics  J. Mater. Chem. A, (2024), 12, 18528 (中科院分区2区)
  6. W.X. Zhang, Z. Li, J.H. ZHang, C. He*, N.X. Ning* NiS2 @MWCNTs as a promising anode material for lithium and sodium-ion batteries with superior cycling stability J Alloy and compd. 971 (2024) 172669 (中科院分区2区)
  7. Z.J. Li,* S.Q. Ji, H. X. Liu, C. Xu, C. M. Gao, X. Lu, H. X. Sun, S. Dou, S. Xin, J. H. Horton,  C. He,* Constructing Asymmetrical Coordination Microenvironment with Phosphorus-Incorporated Nitrogen-Doped Carbon to Boost Bifunctional Oxygen Electrocatalytic Activity Adv. Funct. Mater. 23 (2024) 14444.(中科院1区)

2023

  1. C. He, J.L Ma, W.X. Zhang Design of novel transition-metal-doped C4N4 as highly effective electrocatalysts for nitrogen fixation with a new intrinsic descriptor J Energy Chem., 84 (2023) 131139.(中科院1区)(ESI 1%)
  2. J.S. Zong, C. He*, W.X. Zhang*, M. Bai. Transition metals anchored on two-dimensional p-BN support with center-coordination scaling relationship descriptor for spontaneous visible-light-driven photocatalytic nitrogen reduction J Colloid Ineterf. Sci. 652 (2023) 878-889.(中科院1区)
  3. Z.J. Li,* S.Q. Ji, C. Xu, L. P. Leng, H. X. Liu, J. H. Horton, L. Du, J. C. Gao, C. He,* X. Y. Qi, Q. Xu, J. F. Zhu Engineering the Electronic Structure of Single-Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc-Air Batteries Adv. Mater. 35(2023) 2209644.(中科院1区)
  4. C. He, C. Xu, W.X. Zhang* Instructive Synergistic Effect of Coordinating Phosphorus in Transition-Metal-Doped βPhosphorus Carbide Guiding the Design of High-Performance CO2RR Electrocatalysts ACS Appl. Mater. Interfaces 15, (2023) 57015−57028.(中科院2区)
  5. W.X. Zhang, J.T. Hou, M. Bai, C. He*, J.R. Wen* Spontaneously enhanced visible-light-driven photocatalytic water splitting of type II PG/AlAs5 van der Waal heterostructure: A first-principles study Chinese Chinese Chem. Lett. 34 (2023) 108270(IF =9.1)(中科院1区)
  6. W.X. Zhang, J.T. Hou, M. Bai, C. He*, J.R. Wen*. Construction of novel ZnO/Ga2SSe (GaSe) vdW heterostructures as efficient catalysts for water splitting. Appl. Surf. Sci., 634 (2023) 157648. (IF =6.7) (中科院1区)
  7. W.X. Zhang, J.H. Zhang, J.H. Guo, C. He*, J.R. Wen*  NiS2 nanospheres coated by nitrogen-doped carbon for enhanced sodium storage performance J Alloy and compd. 939 (2023) 168379. (IF =6.2) ((中科院2区)
  8. W.X. Zhang, S. Xi, Y. Liang, C. He* Construction of novel PG/GeP2 and PG/SiP2 vdW heterostructures for high-efficiency photocatalytic water splitting Appl. Surf. Sci., 608(2023) 155106 (IF =6.7) (中科院1(ESI 1%) 
  9. W.X. Zhang, J.H. Guo, H.Y. Ma, J.R. Wen*, C. He* Anchoring of transition metals to CN as efficient single-atom catalysts for propane dehydrogenation Chem. Phys. Lett. 809 (2023) 140154 (IF =2.8) (3区)
  10. Y. B. Wu, C. He*, W.X. Zhang*. Building up a general selection strategy and catalytic performance prediction expressions of heteronuclear double-atom catalysts for N2 reduction. J Energy Chem., 82 (2023) 375–386. (ESI 1%)
  11. C. He , Z.F. Qi, W.X. ZhangDesign of transition metal carbonitrides (MCNs) as promising anchoring and high catalytic performance materials for lithium-sulfur batteries J Alloy and compd. 934 (2023) 167786. (ESI 1%)

2022

  1. W. X. Zhang, J. H. Zhang, Y. K. Zhang, C. He*, P. Zhao, NiS2 nanoparticles anchored on MXene conductive frameworks with enhanced lithium and sodium storage properties, IONICS, 28, (2022) 4621-4629
  2. C. He, Y. Liang, W.X. ZhangDesign of Novel Transition-Metal-Doped C6N2 with High-Efficiency Polysulfide Anchoring and Catalytic Performances toward Application in Lithium-Sulfur Batteries ACS Appl. Mater. Interfaces 14, (2022),  29120-29130.
  3. C. He, C. Xu, W.X. Zhang Shortening the screening process towards high-performance 2D-MOF NRR electrocatalysts with Delta(mu(B_TM)- mu/(B_x)) as the descriptor of N-2 activation capability Appl. Surf. Sci. 606 (2022) 154904
  4. W.X. Zhang , H.Y. Ma, T.T. Li, C. He * Rational design of a novel two-dimensional porous metal-organic framework material for efficient benzene sensor Chinese Chem. Lett 33(8) (2022) 3726-3732.
  5. Y.B. Wu, C. He*, W.X. Zhang* Capture-Backdonation-RecaptureMechanism for Promoting N2 Reduction by Heteronuclear Metal-Free Double-Atom Catalysts J. Am. Chem. Soc. (2022), 144, 93449353. (ESI 1%)
  6. C. He, F.S. Han, J.H. Zhang, W.X. Zhang, The InSe/g-CN van der Waals hybrid heterojunction as a photocatalyst for water splitting driven by visible light, Chinese Chem. Lett 33(1) (2022) 404-409. (ESI 1%) 

2021

  1. T.T. Li, C. He*, W.X. Zhang*; Rational design of porous carbon allotropes as anchoring materials for lithium sulfur batterie Journal of Energy Chemistry 56 (2021), 13824-13827. (ESI 1%)
  2. Ban, J; Jiao, XX; Feng, YY; Xue, J; He, C; Song, JX All-Temperature, High-Energy-Density Li/CFx Batteries Enabled by a Fluorinated Ether as a Cosolvent ACS Appl. Energy Mater. 4 (2021), 3777-3784
  3. C. He, Y. Liang, W.X. Zhang Constructing a novel metal-free g-C3N4/g-CN vdW heterostructure with enhanced visible-light-driven photocatalytic activity for water splitting Appl. Surf. Sci. 553 (2021) 149550
  4. Y.B. Wu, C. He*, W.X. Zhang* Novel Design Strategy of High Activity Electrocatalysts toward Nitrogen Reduction Reaction via Boron-Transition-Metal Hybrid Double-Atom Catalysts ACS Appl. Mater. Interfaces 13, (2021),  47520-47529.
  5. W.X. Zhang , H.M. Yan, C. He *g-C(6)N(6 )monolayer: A highly sensitive molecule sensor for biomarker volatiles of liver cirrhosis Appl. Surf. Sci. 566 (2021) 150716
  6. W.X. Zhang, Y.Yin, C. He* Spontaneous Enhanced Visible-Light-Driven Photocatalytic Water Splitting on Novel Type-II GaSe/CN and Ga2SSe/CN vdW Heterostructures Journal of Physical Chemistry Letters, 12 (2021)5064-5075. (ESI 1%)
  7. W.X. Zhang , Y.Yin, C. He P Doping Promotes the Spontaneous Visible-Light-Driven Photocatalytic Water Splitting in Isomorphic Type II GaSe/InS Heterostructure*Journal of Physical Chemistry Letters, 12 (2021)7892-7900

2020

  1. W.X. Zhang, Y. Yin, C. He*, Lowering the Schottky barrier height of G/WSSe van der Waals heterostructures by changing the interlayer coupling and applying external biaxial strain Phys.Chem.Chem.Phys 22 (2020), 26231
  2. T.T. Li, C. He*, W.X. Zhang*, Two-dimensional porous transition metal organic framework materials with strongly anchoring ability as lithium-sulfur cathode, Energy. Storage. Mater. 25 (2020) 866-875. (ESI 1%)
  3. C. He, F.S. Han, J.H. Zhang, W.X. Zhang, The In2SeS/g-C3N4 heterostructure: a new two-dimensional material for photocatalytic water splitting, J. Mater. Chem. C 8(20) (2020) 6923-6930. 
  4. C. He, M. Zhang, T.T. Li, W.X. Zhang, A novel C6N2 monolayer as a potential material for charge-controlled CO2 capture, J. Mater. Chem. C 8(19) (2020) 6542-6551.
  5. C. He, M. Zhang, T.T. Li, W.X. Zhang, Electric field-modulated high sensitivity and selectivity for NH3 on alpha-C2N2 nanosheet: Insights from DFT calculations, Appl. Surf. Sci. 505 (2020) 9.

2019

  1. Guiwu Liu, Shaofeng Bai, Shahid Hussain,* Kuibao Zhang,* Liyang Lin, Tongtong Li, Cheng He*, Ziwei Xu, and Guanjun Qiao Na-Ions Diffusion Impacts Supercapacitor Performance for Amaryllis-like NiCo2O4 Nanostructures Inorg. Chem. (2019), 58, 16, 11110-11117 (IF= 4.85)
  2. W.X. Zhang, M.M. Dong, C. He*, Novel electronic and planar magnetic properties of two-dimensional surface decorated antimonene Mater. Res. Bull. (2019), 118, 110489. (IF= 3.36)
  3. W.X. Zhang, H. Wang,C.H. Shi,S.Y. Liu,S.Y. Chang, C. He* Tunable Electronic and Optical Properties of a Planar Hydrogenated AsSi Hybrid Nanosheet: A Potential Wide Water-Splitting Photocatalyst J. Phys. Chem. C (2019) 123, 14999-15008.
  4. C. He, J. H. Zhang, W. X. Zhang,* T. T. Li Type-II InSe/g-C3N4 Heterostructure as a High-Efficiency Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting J. Phys. Chem. Lett. (2019), 10, 3122-3128 (IF= 7.329)
  5. T.T. Li, C. He*, W.X. Zhang* A novel porous C 4 N 4 monolayer as a potential anchoring material for lithiumsulfur battery design J. Mater. Chem. A, (2019), 7, 4134-4144 (IF= 10.733)  (ESI 1%)
  6. C. He; J. H. Zhang; W. X. Zhang; T. T. Li GeSe/BP van der Waals Heterostructures as Promising Anode Materials for Potassium-Ion Batteries J. Phys. Chem. C 2019, 123, 51575163(IF= 4.309)
  7. Cheng He,  Ming Cheng, Tongtong Li, and Wenxue Zhang Tunable Ohmic, pType Quasi-Ohmic, and nType Schottky Contacts of Monolayer SnSe with Metals ACS Appl. Nano Mater. (2019), 2, 27672775
  8. Tongtong Li, Cheng He,* and Wenxue Zhang* Primitive and OFunctionalized RGraphyne-like BN Sheet: Candidates for SO 2 Sensor with High Sensitivity and Selectivity at Room Temperature ACS Appl. Electron. Mater. (2019), 1, 3443.
  9. W.X. Zhang, W.H. He, T.T. Li, J.W. Zhao, C. He, *Theoretical prediction of germanium selenium nanosheet as a potential anode material for high-performance alkali-metal based battery J Solid State Chem. (2019) 277, 17-24 IF=  2.299(SCI)
  10. T.T. Li , C. He,* W.X. Zhang,* M. Cheng Enhanced catalytic CO oxidation by Cu 13-m Ni m (m=0, 1, 13) clusters at ambient temperatures with more active sites and distinct mechanistic pathways Appl. Surf. Sci. (2019), 479,39-46 IF =4.439(SCI)
  11. Xingxing Jiao, Yangyang Liu, Bing Li, Wenxue Zhang, Cheng He, Chaofan Zhang, Zhaoxin Yu Tieyu Gao, Jiangxuan Song,* Amorphous phosphorus-carbon nanotube hybrid anode with ultralong cycle life and high-rate capability for lithium-ion batteries Carbon 148 (2019) 518-524

2018

  1. C. He; Cheng; M, Zhang. M; W.X. Zhang* Interfacial Stability and Electronic Properties of Ag/M (M = Ni, Cu, W, and Pd) and Cu/Cr Interfaces Journal of Physical Chemistry C (2018) 122, 17928-17935(IF= 4.536)
  2. C. He, Cheng. M,  W.X. Zhang* Tunable electronic and magnetic properties of transition metals doped antimonene: a first-principles study Mater. Res. Express (2018), 5, 065059 (IF= 1.449)
  3. W.X. Zhang , W.H. He, J.W. Zhao, C. He* Electronic properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures under in-plane biaxial strains J Solid State Chem. (2018) 265, 257-265 IF=  2.299(SCI)
  4. T.T. Li, C. He*, W.X. Zhang* Electric field improved the sensitivity of CO on substitutionally doped antimonene Appl. Surf. Sci. (2018), 427,388 IF =4.439(SCI)
  5. T.T. Li, C. He*, W.X. Zhang* Structural complexity and wide application of two-dimensional S/O type antimonene Appl. Surf. Sci. (2018), 441,77 IF =4.439(SCI)
  6. T.T. Li, C. He*, W.X. Zhang*, M. Cheng Structural and melting properties of Cu-Ni clusters: A simulation study J Alloy and compd. (2018), 752,76 IF =3.779(SCI)

2017年以前

  1. M. M. Dong, C. He*, W. X. Zhang*;A tunable and sizable band gap of a g-C3N4/ graphene/g-C3N4 sandwich heterostructure: a van der Waals density functional study. J. Mater. Chem. C (2017), 5, 3830-3837. (IF= 5.256)
  2. M. M. Dong, C. He*; W. X. Zhang* Tunable electronic properties of arsenene and transition-metal dichalcogenides heterostructures: A first principles calculationJournal of Physical Chemistry C (2017) 121, 22040 (IF= 4.536)
  3. C. He, X. F. Wang and W. X. Zhang* Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons Phys.Chem.Chem.Phys (2017), 19, 18426 IF= 4.123 (SCI)
  4. M. Bai, W. X. Zhang*, C. He* Electronic and magnetic properties of Ga, Ge, P and Sb doped monolayer arsenene J Solid State Chem. (2017) 251, 1 IF=  2.299(SCI)
  5. W. X Zhang, M. M. Dong, T. T. Li, J. L. Gong, C. He*, Tunable electronic properties of graphene - fully hydrogenated boron nitride heterostructure: a van der Waals density functional study. Superlattices and Microstructures (2017), 10923. IF= 2.123
  6. W. X. Zhang, J.W. Zhao, W.H. He J. Luan, C. He*, Enhanced hydrophilic and conductive properties of blue phosphorene doped with Si atom Chem. phys. Lett. (2016), 653,42 IF=1.815(SCI)
  7. Hua Pan, Yanfei Jian, Yanke Yu, Ningna Chen, Chi He*, Cheng He* Promotional mechanism of propane on selective catalytic reduction of NOx by methane over In/H-BEA at low temperature Appl. Surf. Sci. (2016), 390, 608 IF =3.105(SCI)
  8. W. X. Zhang, Y. B. Wang, P. Zhao, P; C. He* Tuning the electronic and magnetic properties of graphene-like SiGe hybrid nanosheets by surface functionalization Phys. Chem. Chem. Phys (2016), 18, 26205. IF= 4.123 (SCI)
  9. M. X. Xiao, Z.M. Ao T. H. Xu, C. He, H.Y. Song and L.Wang Strain modulating half-metallicity of semifluorinated GaN nanosheets Chem. phys. Lett. (2016), 653,42 IF=1.860(SCI)
  10. C. He; X.L. Wu; G. Liu; W.X. Zhang Elastic and transport properties of nanolayered crystalline Cu/amorphous Cu-Zr multilayers Materials and Design (2016), 106, 133 IF =3.997(SCI)
  11. C. He, W. X. Zhang, T. Li, L. Zhao and X. G. Wang Tunable electronic and magnetic properties of monolayer MoS2 on decorated AlN nanosheets: a van der Waals density functional study Phys.Chem.Chem.Phys (2015), 17, 23207 IF= 4.123 (SCI)
  12. C. He, G. Liu, W.X. Zhang, Z.Q. Shi, S.L. Zhou, Tuning structures and electron transport properties of ultrathin Cu nanowires by size and bending stress using DFT and DFTB methods RSC Advance (2015), 5,22464. IF= 3.708 (SCI)
  13. C. He, W.X. Zhang, Z.Q. Shi, J.P. Wang, H. Pan, Effect of bending stress on structures and quantum conduction of Cu nanowires, Applied Physics Letters, (2012), 100, 123107. IF=3.515 (SCI)
  14. C. He, L. Qi, W.X. Zhang, H. Pan, Effect of electric and stress field on structures and quantum conduction of Cu nanowires, Applied Physics Letters, (2011), 99, 073105. IF=3.515 (SCI)
  15. C. He, W.X. Zhang, J.L. Deng, Electric field and size effects on atomic structures and conduction properties of ultrathin Cu nanowires, The Journal of Physical Chemistry C, (2011), 115, 3327. IF=4.835(SCI)
  16. K. Wang, C.J. Zhou, Dan Xi, Z. Q. Shi*, C. He*, H. X. Xia, G. W. Liu*, G. J .Qiao Componet-controllable synthesis of Co(SxSe1-x) nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction, Nano Energy (2015) 18, 1  IF = 10.07(SCI)
  17. W. X. Zhang, C. He,* T. Li and S. B. Gong Tuning electronic and magnetic properties of zigzag graphene nanoribbons with a Stone–Wales line defect by position and axis tensile strain RSC Advance (2015), 5,33407. IF= 3.84 (SCI)
  18. W. X. Zhang, T. Li, S. B. Gong, C. He*, L. Duan  Tuning the electronic and magnetic properties of graphene-like AlN nanosheets by surface functionalization and thickness Phys. Chem. Chem. Phys. (2015), 17, 10919. IF= 4.493 (SCI)

  1. W.X. Zhang, C. He, Melting of Cu Nanowires: A Study Using Molecular Dynamics Simulation, The Journal of Physical Chemistry C (2010), 114, 871. IF=4.835 (SCI)
  2. C. He, W.X. Zhang, Y. Li, The glass transition behaviors of low-density amorphous ice films with different thicknesses, Journal of Chemical Physics (2010), 133, 204504. IF=3.122 (SCI)
  3. C. He, X. L. Wu, W.X. Zhang, Y. Li, Size-Dependent Stability of Nonhelical and Helical Copper Nanowires Using Density Functional Theory and Density-Functional-Based Tight-Binding Methods Nanoscience and Nanotechnology Letter (2015), 7, 911. IF= 1.444 (SCI)
  4. C. He, W.X. Zhang, Effect of Electric Field on Electronic Properties of Nanogenerators Based on ZnO Nanowires, Nanoscience and Nanotechnology Letter (2013), 5, 286. IF= 1.444 (SCI)
  5. C. He, R. Huang, Z.Q. Shi, W.X. Zhang,  Coupling of electric field and bending modulated ballistic transport properties of copper nanowires Materials Technology: Advanced Functional Materials (2015), 30, A37. IF= 1.227(SCI)
  6. Z.Q. Shi*, Z.L Wei, C He* et al, Synthesis, crystal structure and photoluminescence of novel blue-emitting Eu2+-doped (SiC)x–(AlN)1_xphosphors by a nitriding combustion reactionRSC Advance (2014), 4,62926. IF= 3.708 (SCI)
  7. W.X.Zhang*, C.He*, T.Li, et al, First-principles study on the electronic and magnetic properties of armchair graphane/graphene heterostructure nanoribbons Solid State Communications (2015), 211, 23. IF= 1.897(SCI)
  8. W.X.Zhang, T.Li, C.He* et al, First-principle study on Ag-2N heavy codoped of p-type graphene-like ZnO nanosheet Solid State Communications (2015), 204, 47. IF= 1.897 (SCI)
  9. W. X. Zhang*, Y. X. Bai, C. He* et al, Electronic structure and magnetic properties of N monodoping and (Ag,N) codoped graphene-like ZnO sheet Materials Technology: Advanced Functional Materials (2014) , 29, A118. IF= 0.746 (SCI)
  10. C. He, W.X. Zhang, Effect of size and stress field on electronic properties of ZnO nanowires Materials Science Forum (2012) 724, 209. (EI)
  11. C. He, W.X. Zhang, D. Li, Q.W. Li, Z.Q.Shi, First-principles investigation on Ag, N codoped in p-type ZnO Materials Science Forum (2012) 724, 114.(EI)
  12. W. X. Zhang, C. He, Electroless Ni-W-P/Ni-B duplex coatings on AZ91D magnesium alloy Int. Conf. Mech. Autom. Control Eng. 2010, 3895 (EI)
  13. W.X. Zhang;Z.J. Zhou; C. He; G. Li, Chromium-free pretreatment and Ni-P alloys technology on magnesium alloy, Jilin Daxue Xuebao (Gongxueban) (2011) 1, 78. (EI)
  14. W.X. Zhang; X. Hu; X.B. Lin; C. He* Zr-catalyzed hydrogen chemisorptions on an Al Surface, Advanced Materials Research, (2011), 197-198, 1069. (EI)
  15. W. X.  Zhang, Y. X. Bai,  C. He, X. L. Wu, First-principle study on the effect of high Ag-2N co-doping on theconductivity of ZnO. Bulletin of Materials Science (2015), 38747. IF= 0.899(SCI)
  16. C. He, P. Zhang, Y. F. Zhu, Q. Jiang, Structures and quantum conduction of Cu nanowires under electric fields using first-principles J. Phys. Chem. C(2008) 112 9045-9049 IF=4.52
  17. C. He, J. S. Lian, Q. Jiang, “Glass-transition temperature of low density amorphous water and related structures”, J. Phys. Chem. B 111(2007) 11177-11180. IF = 3.603
  18. C. He, J. S. Lian, Q. Jiang, “Electronic structures and hydrogen bond network of high-density and very high-density amorphous ices”, J. Phys. Chem. B 109( 2005) 19893-19896. IF = 3.603
  19. C. He, J. S. Lian, Q. Jiang, Electronic structures and hydrogen bond network of ambient water and amorphous ices, Chem. Phys. Lett. 437(2007) 45-49. IF = 2.28 
  20. W. X. Zhang, C. He, Melting of Cu Nanowires: A Study Using Molecular Dynamics Simulation, J. Phys. Chem. C 114(2010) 8717–8720. IF=4.52
  21. W. X. Zhang, C. He, J. S. Lian, Q. Jiang, Selected crystallization of water as a function of size, Chem. Phys. Lett. 421(2006) 251-255. IF = 2.28