登录

何成

教授

基本信息 / Basic Information

  • 博士生导师 硕士生导师
  • 电子邮箱:
  • 学历: 硕博连读
  • 学位: 博士
  • 学科: 材料科学与工程

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Two-dimensional porous transition metal organic framework materials with strongly anchoring ability as lithium-sulfur cathode

发布时间:2025-04-30
点击次数:
发布时间:
2025-04-30
论文名称:
Two-dimensional porous transition metal organic framework materials with strongly anchoring ability as lithium-sulfur cathode
发表刊物:
Energy Strorage Materials
摘要:
Lithium-sulfur (Li-S) batteries are regarded as promising candidates for energy storage devices due to their high theoretical energy density. An ideal Li-S batteries cathode should effectively prevent polysulfide dissolution in order to achieve longer cycle life and higher rate performance. Herein, a new 2D transition metal organic framework material, hexaaminobenzene-based coordination polymers (HAB-CPs), has been systematically investigated as cathode candidate materials for Li-S batteries. First principles calculations combined with the vdW interaction and solvent model reveal that V-HAB-CP has the best ability to hinder the shuttle effect of lithium polysulfides among the three polymers (V, Cr and Fe-HAB-CPs). Quantum conduction (G) and density of states (DOS) calculations indicate that HAB-CPs maintain excellent conductivity during the whole charging process. Moreover, a very small volume change (about 3.06%) of V-HAB-CP before and after the electrode reaction can well deal with the volume expansion problem of Li-S batteries. Meanwhile, the energy density reaches 808.465 W h kg(-1) when the electrode reaction product is Li16S8 /V-HAB-CP. Attributed to these benefits, V-HAB-CP is a suitable cathode material, which is expected to be used in future Li-S battery systems. The computational method adopted in this paper can provide a guidance for considering the influence of electrolytes on the Li-S batteries in the future and be widely used in other simulation calculations involving the solution effect.
合写作者:
T. T. Li, C. He*, W.X.Zhang
卷号:
25, 866-875
页面范围:
25, 866-875
是否译文:
发表时间:
2020-03-01