登录 EN

张磊

教授    博士生导师    硕士生导师

个人信息 更多+
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 职称: 教授

我的新闻

当前位置: 中文主页 - 我的新闻

关于利用SNOM观察topological insulator表面模式的文章被ACS Photonics接收

发布时间:2017-09-18
点击次数:
发布时间:
2017-09-18
文章标题:
关于利用SNOM观察topological insulator表面模式的文章被ACS Photonics接收
内容:

 

    Infrared nano-imaging reveals the surface metallic plasmons in topological insulator

Authors:Jian Yuan#, Weiliang Ma#, Lei Zhang#, Yao Lu, Meng Zhao, Hongli Guo, Jin Zhao, Wenzhi Yu, Yupeng Zhang, Kai Zhang, Hui Ying Hoh, Xiaofeng Li, Kian Ping Loh, Shaojuan Li, Chengwei Qiu, and Qiaoliang Bao 

#These authors contributed equally. 

Abstract: Surface plasmons make a high degree of localization of electromagnetic fields achievable at the vicinity of metal surfaces. Topological insulators (TIs) are a family of materials which are insulating in the bulk but have metallic surfaces caused by the strong spin−orbit coupling. Surface plasmons supported by the surface state on topological insulators have attracted incredible interests from ultra violet to mid-infrared frequencies. In this work, we experimentally investigate the near-field properties of Bi2Te3 nanosheets using scattering-type scanning near-field optical microscopy (s-SNOM). The s-SNOM tip enables to detect significantly enhanced intensity in its near field at precisely controlled positions with regards to Bi2Te3 structure. With the help of highly position-selective excitation and high-pixel real-space mapping, we discover near-field patterns of bright outside fringes which are associated with its surface-metallic, plasmonic behavior at mid-infrared frequency. Thereby, we experimentally demonstrate that the scattered signal responses and near-field amplitudes of outside fringes can be tailored via mechanical (sheet thickness of Bi2Te3), electric (electrostatic gating), and optical (incident wavelength) fashions. The discovery of outside fringes in TI nanosheets may enable the development of strongly enhanced light–matter interactions for quantum optical devices, mid-infrared (MIR) and terahertz detectors or sensors.