• EN
  • 登录
访问量:   最后更新时间:--

张早校

博士生导师
硕士生导师
职称:教授
教师姓名:张早校
电子邮箱:
学历:博士研究生毕业
性别:男
学位:博士
在职信息:在职
毕业院校:西安交通大学
所属院系:化学工程与技术学院
学科:动力工程及工程热物理
论文成果
当前位置: 中文主页 > 科学研究 > 论文成果
Ab initio study of metal carbide hydrides in 2.25Cr1Mo0.25V steel
发布时间:2025-04-30    点击次数:

发布时间:2025-04-30

论文名称:Ab initio study of metal carbide hydrides in 2.25Cr1Mo0.25V steel

发表刊物:Physical Chemistry Chemical Physics

摘要:2.25Cr1Mo0.25V is a state-of the-art alloy used in the fabrication of modern hydrogenation reactors. Compared to the conventional 2.25Cr1Mo steel, the 2.25Cr1Mo0.25V steel exhibits a better performance, in particular higher hydrogen damage resistance. Previous experimental studies indicate that carbides in steels may be responsible for the hydrogen-induced damage. To gain a better understanding of the mechanism of such damage, it is essential to study hydrogen uptake in metal carbides. In this study, Density Functional Theory (DFT) is used to investigate the stability of chromium, molybdenum and vanadium carbides (CrxCy, MoxCy and VxCy) in the 2.25Cr1Mo0.25V steel. The stability of their corresponding interstitial hydrides was also explored. The results showed that Cr7C3, Mo2C and V6C5 are the most stable carbides in their respective metal–carbon (Cr–C, Mo–C and V–C) binary systems. Specifically, V6C5 shows the strongest hydrogen absorption ability because of its strong V–H and C–H ionic bonds. On the other hand, V4C3, whose presence in the alloy was established in experimental studies, is predicted to be stable as well, along with V6C5. Our findings indicate that the hydrogen absorption ability of V4C3 is higher than that of V6C5. Additionally, the charge and chemical bonding analyses reveal that the stability of the metal carbide hydrides strongly depends on the electronegativity of the metal. Due to the high electronegativity of V, vanadium carbides form the strongest ionic bonds with hydrogen, compared to those of Mo and Cr. The results from this study suggest that the unique capacity of accommodating hydrogen in the vanadium carbides plays an important role in improved hydrogen damage resistance of the 2.25Cr1Mo0.25V alloy in hydrogenation reactors.

合写作者:Min He, Chidozie Onwudinanti, Yaoting Zheng, Xiaomei Wu, Zaoxiao Zhang*, Shuxia Tao*

卷号:23

页面范围:5199 - 5206

是否译文:

发表时间:2021-02-10