夏明岗
- 教授
- Supervisor of Doctorate Candidates
- Supervisor of Master's Candidates
- E-Mail:
- Date of Employment:2002-04-09
- Education Level:With Certificate of Graduation for Doctorate Study
- Professional Title:教授
- Status:Employed
- Alma Mater:西安交通大学
- College:School of Physics
- Discipline:Physics
- Papers
Width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons
Release Time:2025-04-30 Hits:
- Date:2025-04-30
- Title of Paper:Width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons
- Journal:Mod. Phys. Lett. B
- Summary:First-principles study based on density functional theory has been employed to in a investigate width-dependent structural stability and magnetic properties of monolayer z zigzag MoS2 nanoribbons (ZZ-MoS2 NRs). The width N = 4-6 (the numbers of zigzag Mo-S chains along the ribbon length) are considered. The results show that all studied ZZ-MoS2 NRs are less stable than two-dimensional MoS2 monolayer, exhibiting that a broader width ribbon behaves better structural stability and an inversely proportional relationship between the structural stability (or the ribbon with) and boundary S-Mo interaction. Electronic states imply that all ZZ-MoS2 NRs exhibit magnetic properties, regardless of their widths. Total magnetic moment increases with the increasing width N, which is mainly ascribed to the decreasing S-Mo interaction of the two zigzag edges. In order to confirm this reason, a uniaxial tension strain is applied to ZZ-MoS2 NRs. It has been found that, with the increasing tension strain, the bond length of boundary S-Mo increases, at the same time, the magnetic moment increases also. Our results suggest the rational applications of ZZ-MoS2 NRs in nanoelectronics and spintronics.
- Co-author:Y. N. Wen, P. F. Gao, X. Chen, M. G. Xia, Y. Zhang, S. L. Zhang
- Volume:31
- Page Number:1750017
- Translation or Not:No
- Date of Publication:2017-01-30
