EN 登录

王顺森

副教授 博士生导师 硕士生导师

个人信息
Personal Information
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 职称: 副教授
  • 毕业院校: 西安交通大学
  • 学科: 动力工程及工程热物理

论文成果

当前位置: 中文主页 > 科学研究 > 论文成果

Mechanisms of steam turbine blade particle erosion and crucial parameters for minimizing blade erosion

发布时间:2025-04-30
点击次数:
发布时间:
2025-04-30
论文名称:
Mechanisms of steam turbine blade particle erosion and crucial parameters for minimizing blade erosion
发表刊物:
Proc. IMech A: Journal of Power and Energy
摘要:
Reducing the solid particle erosion of blades is crucial to increasing the service life, reliability and cost of steam turbines.
In this article, we performed many three-dimensional numerical simulations on the trajectory and erosion of solid
particles in turbine cascades, and the relationship between the structural parameters of cascades and erosion characteristics
was systematically studied. The results indicated that the erosion damage to the blade depends mainly on the
first impingement of every solid particle on the wall after entering into the cascades, and the erosion rate of the first
impingement is much larger than that caused by additional impingements on the wall after rebounding of the particle.
Furthermore, it was also found that the structure parameter G ¼ (byt)/bx of the cascade and the attack angle () of the
steam admission are the most important parameters of blade erosion resistance. Increasing G or  would shift
the position of the particle’s first impingement toward the leading edge of the blade. The most effective way of increasing
the erosion resistance of the blade is to select an appropriate G while considering the particle size and attack angle ()
required to prevent ferric oxide particles from causing serious erosion on the trailing edge. All of these achievements are
important in the blade selection and anti-solid particle erosion optimization processes when designing a new turbine or
upgrading an old turbine.
Ke
合写作者:
王顺森,蔡柳溪,毛靖儒,张俊杰,徐亚涛
卷号:
5/227
页面范围:
546-556
是否译文:
发表时间:
2013-05-22