• English
  • 登录

鲁红亮

教授 博士生导师 硕士生导师

个人信息 更多+
  • 电子邮箱:
  • 学历: 硕博连读
  • 学位: 博士
  • 职称: 教授

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Regular factors of regular graphs from eigenvalues

发布时间:2025-04-30
点击次数:
发布时间:
2025-04-30
论文名称:
Regular factors of regular graphs from eigenvalues
发表刊物:
Electronic J. Combinatorics
摘要:
Let $r$ and $m$ be two integers such that $rgeq m$. Let $H$ be a
graph with order $|H|$, size $e$ and maximum degree $r$ such that
$2egeq |H|r-m$. We find a best lower bound  on spectral radius of
graph $H$ in terms of $m$ and $r$. Let $G$ be a connected
$r$-regular graph of order $|G|$ and $ k<r$ be an integer. Using the
previous results, we find some best upper bounds (in terms of $r$
and $k$) on the third largest eigenvalue that is sufficient to
guarantee that $G$ has a $k$-factor when $k|G|$ is even. Moreover,
we find a best bound on the second largest eigenvalue that is
sufficient to guarantee that $G$ is $k$-critical when $k|G|$ is odd.
Our results extend the work of Cioabu{a},  Gregory and Haemers
cite{Cio3} who obtained such results for 1-factors.
合写作者:
H. Lu
是否译文:
发表时间:
2010-11-27