• English
  • 登录

鲁红亮

教授 博士生导师 硕士生导师

个人信息 更多+
  • 电子邮箱:
  • 学历: 硕博连读
  • 学位: 博士
  • 职称: 教授

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

On vertex-coloring edge-weighting of graphs

发布时间:2025-04-30
点击次数:
发布时间:
2025-04-30
论文名称:
On vertex-coloring edge-weighting of graphs
发表刊物:
Front. Math. China
摘要:
A $k$-{it edge-weighting} $w$ of a graph $G$ is an assignment of an integer weight, $w(e)in {1,dots, k}$, to each edge $e$. An edge weighting naturally induces a vertex coloring $c$ by defining $c(u)=sum_{usim e} w(e)$ for every $u in V(G)$. A $k$-edge-weighting of a graph $G$ is emph{vertex-coloring} if the induced coloring $c$ is proper, i.e., $c(u)
eq c(v)$ for any edge $uv in E(G)$.
Given a graph $G$ and a vertex coloring $c_0$, does there exist an edge-weighting such that the induced vertex coloring is $c_0$? We investigate this problem by considering edge-weightings defined on an abelian group.
It was proved that every 3-colorable graph admits a vertex-coloring $3$-edge-weighting cite{KLT}. Does every 2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In particular, we show that 3-connected bipartite graphs admit vertex-coloring 2-edge-weighting.
合写作者:
H. Lu, X. Yang and Q. Yu
卷号:
4
页面范围:
325-334
是否译文:
发表时间:
2009-03-03