• 教授
  • 博士生导师
  • 硕士生导师
  • 电子邮箱:
  • 入职时间:1997-07-01
  • 学历:博士研究生毕业
  • 性别:
  • 学位:博士
  • 在职信息:在职
  • 毕业院校:西安交通大学
  • 所属院系:数学与统计学院
  • 学科:数学
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果
Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation
  • 发布时间:2025-04-30
  • 论文名称:Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation
  • 发表刊物:Advances in Computational Mathematics
  • 摘要:We consider numerical approximations for the modified phase field crystal equation in this paper. The model is a nonlinear damped wave
    equation that includes both diffusive dynamics and elastic interactions. To develop easy-to-implement time-stepping schemes with unconditional energy stabilities, we adopt the “Invariant Energy Quadratization”approach. By using the first-order backward Euler, the second-order Crank–Nicolson, and the second-order BDF2 formulas, we obtain three linear and symmetric positive definite schemes. We rigorously prove their unconditional energy stabilities and implement a number of 2D and 3D numerical experiments to demonstrate the accuracy, stability, and efficiency.
  • 合写作者:Qi Li,Liquan Mei,Xiaofeng Yang,Yibao Li
  • 卷号:45
  • 页面范围:1551-1580
  • 是否译文:
  • 发表时间:2019-06-01
  • 合写作者:Qi Li,Liquan Mei,Xiaofeng Yang,Yibao Li