• 教授
  • 博士生导师
  • 硕士生导师
  • 电子邮箱:
  • 入职时间:1997-07-01
  • 学历:博士研究生毕业
  • 性别:
  • 学位:博士
  • 在职信息:在职
  • 毕业院校:西安交通大学
  • 所属院系:数学与统计学院
  • 学科:数学
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果
Finite difference scheme on graded meshes to the time-fractional neutron diffusion equation with non-smooth solutions
  • 发布时间:2025-04-30
  • 论文名称:Finite difference scheme on graded meshes to the time-fractional neutron diffusion equation with non-smooth solutions
  • 发表刊物:Applied Mathematics and Computation
  • 摘要:In this paper, we construct and analyze an efficient numerical scheme based on graded meshes in time for solving the the fractional neutron diffusion equation with delayed neutrons and non-smooth solutions, which can be found everywhere in nuclear reactors. Using the L1 discretization of each time fractional derivatives on graded meshes and the classical finite difference for the spatial derivatives on uniform meshes, we prove the order of convergence in time is at best (2 − 2α) instead of 2α under non-smooth solutions, where 0 < α < 1/2 is the anomalous diffusion order. Numerical experiments are carried out to support our theoretical analysis. Although we can pick any mesh parameter r provided r ≥ (2 − 2α)/2α to get the optimal order, we choose the minimum in consideration of both accuracy and convergence.05
  • 合写作者:Yingying Xie, Daopeng Yin, Liquan Mei
  • 卷号:435(2022), 12747
  • 是否译文:
  • 发表时间:2022-08-13
  • 合写作者:Yingying Xie, Daopeng Yin, Liquan Mei