登录 EN

李蓬勃

教授    博士生导师    硕士生导师

个人信息 更多+
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 职称: 教授

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Enhancing Spin-Phonon and Spin-Spin Interactions Using Linear Resources in a Hybrid Quantum System

发布时间:2025-04-30
点击次数:
发布时间:
2025-04-30
论文名称:
Enhancing Spin-Phonon and Spin-Spin Interactions Using Linear Resources in a Hybrid Quantum System
发表刊物:
Phys. Rev. Lett.
摘要:
Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent
pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying
the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows
the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and
even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement
of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of
magnitude larger than that without modulation. As an example,we showthat the proposed scheme can apply
to generating entangled states ofmultiple spins with high fidelities even in the presence of large dissipations
合写作者:
Peng-Bo Li, Yuan Zhou, Wei-Bo Gao, and Franco Nori
卷号:
125
页面范围:
153602
是否译文:
发表时间:
2020-10-10