Papers

Compensated Monte Carlo Collision Model for Particle-in-Cell Simulation in High-Pressure Plasmas

Release Time:2025-04-30
Hits:
Date:
2025-04-30
Title of Paper:
Compensated Monte Carlo Collision Model for Particle-in-Cell Simulation in High-Pressure Plasmas
Journal:
IEEE Transactions on Plasma Science
Summary:
The Monte Carlo collision (MCC) model is widely adopted to simulate discharge plasmas using the particle-in-cell (PIC) method; however, it has low efficiency in high-pressure plasmas because of the small time steps required due to the constraint of high collision frequency. To relax this time step constraint, a  compensated Monte Carlo collision model (CMCC) is proposed which considers multiple collisions in a time step as a series of single collisions to compensate for the neglected collisions. The electron motion in a high-pressure He gas for various reduced electric fields E/N and the streamer formation process
in a laser-triggered spark gap were simulated using the CMCC model. Simulation results showed that the CMCC model with long time step obtained reasonable electron velocity distribution, temperature, drift velocity, plasma density, and space-charge field. It was demonstrated that the CMCC model had high accuracy and
high efficiency, particularly for PIC simulation in high-pressure plasmas.
Co-author:
Hong-Guang Wang, Yong-Dong Li, Chun-Liang Liu
Volume:
38(8)
Page Number:
2062-2068
Translation or Not:
No
Date of Publication:
2010-08-04