Papers

Current position: Home > Research > Papers

Semiclassical simulations in materials science.

  • Release Time:2025-04-30
  • Hits:
  • Date: 

    2025-04-30
  • Title of Paper: 

    Semiclassical simulations in materials science.
  • Journal: 

    Phys. Status Solidi B
  • Summary: 

    Semiclassical simulations in materials science originated with the work of Sankey, Menon, and Allen in 1985, and of Car and Parrinello that same year. Here we briefly review some recent
    studies by the present authors using our method of semiclassical electron–radiation–ion dynamics (SERID). In particular, Zhou et al. and Jiang et al., respectively, determined the optimal
    duration and optimal timing for a series of femtosecond-scale laser pulses to excite a specific vibrational mode in a general
    chemical system. A set of such modes (or even a single characteristic mode) can be used as a ‘‘fingerprint’’ for characterizing a particular molecule or a complex in a solid. One can therefore envision many applications, ranging from fundamental studies to detection of chemical or biological agents. Lin et al. found that excited electrons automatically
    equilibrate to a Fermi–Dirac distribution within roughly 100 fs, solely because of their coupling to the nuclear motion, even though the resulting electronic temperature is one to two orders
    of magnitude higher than the kinetic temperature defined by the nuclear motion. Microscopic simulations like these can then provide the separate electronic and kinetic temperatures,
    chemical potentials, pressures, and nonhydrostatic stresses required as input for studies on larger length and time scales.
  • Co-author: 

    Chen-Wei Jiang, Xiang Zhou, Zhibin Lin et al.
  • Volume: 

    248
  • Page Number: 

    2008
  • Translation or Not: 

    No
  • Date of Publication: 

    2011-06-13