EN 登录
个人信息 更多+

高传博

教授 博士生导师 硕士生导师

  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士

我的新闻

当前位置: 中文主页 - 我的新闻

Prog Chem: Control of atomic condensed states in multimetallic nanoparticles, by Zhaojun et al

发布时间:2025-09-23
点击次数:
发布时间:
2025-09-23
文章标题:
Prog Chem: Control of atomic condensed states in multimetallic nanoparticles, by Zhaojun et al
内容:

Zhaojun published a perspective on "Control of Atomic Condensed States in Multimetallic Nanoparticles and Their Catalytic Effects" in Progress in Chemistry. Congratulations!

 

This is an invited contribution to the "Condensed State Chemistry" special issue edited by Profs. Ruren Xu, Jihong Yu, Wenfu Yan, and Ran Jia.

 

Title: Control of Atomic Condensed States in Multimetallic Nanoparticles and Their Catalytic Effects

       (多组分金属纳米材料的原子凝聚态调控及其催化效应)

 

Authors: Zhaojun Liu and Chuanbo Gao*

 

Abstract: In nanoscale metal particles, atoms of different elements can exhibit various condensed states: they may either fully mix to form homogeneous alloys or separate into distinct phases, creating heterogeneous structures. These diverse atomic arrangements significantly affect the electronic coupling and catalytic properties of the multimetallic nanoparticles. Precise control over the atomic condensed states within nanoparticles holds the promise of optimizing their electronic structures, offering significant opportunities for the design of novel nanocatalysts with distinctive properties. However, controlling atomic condensed states in nanoparticles using current wet-chemical methods remains challenging. In the synthesis of alloy nanomaterials, the intrinsic reduction potential differences between metal salts cause significant variations in reduction kinetics, making it difficult to achieve uniform alloying and precise control over the alloy compositions. In the synthesis of heterogeneous structures, the reduction potential differences cause galvanic replacement reactions between noble metal salts and less-stable metal nanostructures, limiting the controllability of nanocrystal growth. This paper reviews recent research progress in overcoming these synthesis limitations for controlled atomic condensed states of metal atoms in nanoparticles. Specifically, introducing an active hydrogen (i.e., hydrogen atoms or radicals) interfacial reduction mechanism has mitigated the impact of reduction potential differences, improving the mixing homogeneity of different metal atoms within nanoparticles. This approach also allows precise control over the content of each metal component within nanoparticles. By modulating the reduction potentials of metal salts, it has become possible to suppress the galvanic replacement reaction between noble metal salts and less-stable metal nanostructures, leading to a novel family of core-shell nanostructures with a less-stable metal core and a noble metal shell. By precisely regulating the atomic condensed states within multimetallic metal nanoparticles, researchers have been able to effectively tune the electronic structures of these materials, significantly improving the catalytic performance. These advancements highlight the potential of controlled atomic condensed states in multimetallic nanoparticles for developing high-performance catalysts across various applications.

 

摘要:在纳米尺度的金属颗粒中,不同元素的原子可呈现多种凝聚态形式:既可充分混合,形成均匀合金相;也可分离成不同的相,进而形成异质结构。这些不同的原子排列方式显著影响材料的电子耦合效应和催化性能。借助化学合成手段精准调控纳米颗粒内的原子凝聚态,有望优化其电子结构,为新型纳米催化剂的创制与新特性的发现提供契机。然而,湿化学合成在精准调控纳米颗粒原子凝聚态方面仍面临挑战。在合金纳米材料的合成中,金属盐间本征还原电势差造成显著的还原动力学差异,难以实现不同金属组分的均匀合金化及含量的精准调控。在异质结构合成中,受本征还原电势差影响,贵金属盐易与活泼金属纳米结构发生置换反应,限制了纳米晶定向生长的可控性。本文系统评述了近年来在克服上述合成限制方面的研究进展。通过引入活性氢(即氢原子或自由基)界面还原机制,有效缓解了金属间本征还原电势差对还原动力学的影响,显著提升了不同金属原子在纳米颗粒内的混合均匀性,实现了对各组分含量的独立精准调控。通过调控金属盐还原电势,成功抑制了其与活泼金属纳米结构间的置换反应,实现了一类以相对活泼的金属为核、贵金属为壳的新型核壳结构的可控合成。通过精准调控多组分金属纳米颗粒的原子凝聚态,实现了电子结构的有效调控,使其在催化反应中展现出显著的性能提升。