登录

车得福

教授

基本信息 / Basic Information

  • 博士生导师 硕士生导师
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 学科: 动力工程及工程热物理

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy (PDF)

发布时间:2025-04-30
点击次数:
发布时间:
2025-04-30
论文名称:
Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy (PDF)
发表刊物:
Applied Thermal Engineering
摘要:
This paper deals with the optimization of a novel combined power system, which can effectively recover low-temperature waste heat and fully utilize the cold energy of LNG as well, based on the first thermodynamic law and the second thermodynamic law respectively. Parametric analysis has been performed to study the effects of heat source temperature, ammonia turbine inlet pressure, LNG turbine inlet and outlet pressures, as well as ammonia mass fraction of basic solution. The simulation results show that the system performance can be improved by applying optimization techniques. The optimization is conducted under a certain set of constraints by using the differential evolution (DE) algorithm to maximize the first and the second law efficiency respectively. Through parallel direct search over the whole feasible region, it is found that a maximum first law efficiency of 39.33% can be obtained when variable vector V-1 = [423.70 K, 1.8 MPa, 3.904 MPa, 0.3 MPa, 0.52]; while a maximum second law efficiency of 55.62% can be obtained when variable vector V-2 = [423.93 K, 1.874 MPa, 3.493 MPa, 0.8 MPa, 0.48]. In addition, the irreversibilities in various components of the cycle under typical operating conditions and exergy efficiency optimum condition have been compared through detailed exergy analysis. (C) 2013 Elsevier Ltd. All rights reserved.
合写作者:
Huan Wang , Xiaojun Shi , and Defu Che
是否译文:
发表时间:
2013-09-25