登录

崔路卿

副教授

基本信息 / Basic Information

  • 博士生导师 硕士生导师
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 学科: 机械工程

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Shear banding mediated fracture mechanisms in additively manufactured IN738 superalloys under low-strain-rate loading

发布时间:2025-10-16
点击次数:
发布时间:
2025-10-16
论文名称:
Shear banding mediated fracture mechanisms in additively manufactured IN738 superalloys under low-strain-rate loading
发表刊物:
International Journal of Plasticity
摘要:
Shear banding coupled with grain refinement plays a critical role in fracture behavior under dynamic loading and (very) high-cycle fatigue but is rarely observed during low-strain-rate loading. In this study, we report for the first experimental evidence of shear banding mediated fracture mechanism in an electron beam powder bed fusion (EBPBF) fabricated IN738 superalloy upon low-strain-rate (1 × 10−3 s−1) uniaxial tensile loading. The optimized EBPBF process mitigates solidification defects and produces well-aligned columnar grains with a <001> fiber texture along the building direction, achieving superior mechanical properties compared to cast alloys through the synergistic effect of multiple strengthening mechanisms. Notably, the relatively uniform distribution of nano-sized carbides in the EBPBF-fabricated alloys prevents strain-incompatibility cracking caused by coarse carbides in cast alloys and facilitates shear banding mediated transgranular fracture. The shear band, formed due to concentrated plastic deformation along the crack path, is associated with complete grain nanocrystallization and γ′ precipitate fragmentation through intensive dislocations and twinning activities. The formation of shear banding potentially dissipates crack propagation energy and enhances the crack growth resistance. These findings provide new insights into fracture mechanisms and underscore the potential of additive manufacturing for designing damage-tolerant superalloys.
合写作者:
Xiaofeng Dang, Yao Li, Jie Zheng, Luqing Cui, Kaiju Lu, Xiaoqing Liang, Sihai Luo, Guangni Zhou, Yang Jiao, Yihua Dou, Liucheng Zhou, Weifeng He
卷号:
188
页面范围:
104296
是否译文:
发表时间:
2025-05-01