• EN
  • 登录
访问量:   最后更新时间:--

陈鑫

博士生导师
硕士生导师
职称:教授
教师姓名:陈鑫
电子邮箱:
学历:博士研究生毕业
性别:男
学位:博士
在职信息:在职
毕业院校:新南威尔士大学
所属院系:化学工程与技术学院
学科:化学工程与技术
我的新闻
当前位置: 中文主页 > 我的新闻
祝贺田然在ACS Applied Material&Interfaces 发表文章
发布时间:2018-04-25    点击次数:

发布时间:2018-04-25

文章标题:祝贺田然在ACS Applied Material&Interfaces 发表文章

内容:

Fabrication of Self-Healing Hydrogel with On-demand Antimicrobial Activity and Sustained Biomolecules release for Infected Skin Regeneration

 

 

Abstract: Microbial infection has been considered as one of the most critical challenges in bioengineering applications especially in tissue regeneration, which engenders severe threat to public health. Herein, a hydrogel performing properties of rapid self-healing, on-demand antibiosis and controlled cargo release was fabricated by a simple assembly of Fe complex as the cross-linker and hyaluronic acid as the gel network. This hydrogel is able to locally degrade and release Fe3+ to kill bacteria as needed because of hyaluronidase excreted by surrounding bacteria, resulting in efficient antibacterial activity against different types of bacteria. The sustained release property of certain types of growth factors was also observed from this hydrogel owing to its dense network. Moreover, this hydrogel could repeatedly heal itself in minutes because of the coordination interaction between Fe3+ and COOH, exhibiting good potential in bioengineering applications on the exposed tissue, where the materials are easily damaged during daily life. When topically applied onto damaged mouse skin with infection of Staphylococcus aureus, the hydrogel is able to inhibit microbial infections, meanwhile promoting cutaneous regeneration, which formed new skin with no inflammation within a 10 day treatment. These results demonstrate the potential application of this self-healing hydrogel for the integrated therapy of antibiosis and tissue regeneration.

https://pubs.acs.org/doi/10.1021/acsami.8b01740