登录

白博峰

教授

基本信息 / Basic Information

  • 博士生导师 硕士生导师
  • 电子邮箱:
  • 学历: 博士研究生毕业
  • 学位: 博士
  • 学科: 动力工程及工程热物理

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Deformation of a single mouse oocyte in a constricted microfluidic channel

发布时间:2025-04-30
点击次数:
发布时间:
2025-04-30
论文名称:
Deformation of a single mouse oocyte in a constricted microfluidic channel
发表刊物:
Microfluidics and Nanofluidics
摘要:
ZhengYuan Luo, Sinan Guven, Irep Gozen, Pu Chen, Savas Tasoglu, Raymond M Anchan, BoFeng Bai, Utkan Demirci*
Single oocyte manipulation in microfluidic channels via precisely controlled flow is critical in microfluidic-based in vitro fertilization. Such systems can potentially minimize the number of transfer steps among containers for rinsing as often performed during conventional in vitro fertilization and can standardize protocols by minimizing manual handling steps. To study shape deformation of oocytes under shear flow and its subsequent impact on their spindle structure is essential for designing microfluidics for in vitro fertilization. Here, we developed a simple yet powerful approach to (i) trap a single oocyte and induce its deformation through a constricted microfluidic channel, (ii) quantify oocyte deformation in real-time using a conventional microscope, and (iii) retrieve the oocyte from the microfluidic device to evaluate changes in their spindle structures. We found that oocytes can be significantly deformed under high flow rates, e.g., 10 μl/min in a constricted channel with a width and height of 50 and 150 μm, respectively. Oocyte spindles can be severely damaged, as shown here by immunocytochemistry staining of the microtubules and chromosomes. The present approach can be useful to investigate underlying mechanisms of oocyte deformation exposed to well-controlled shear stresses in microfluidic channels, which enables a broad range of applications for reproductive medicine.
合写作者:
ZY Luo, S Guven, I Gozen, P Chen, S Tasoglu, R M Anchan, BF Bai, U Demirci
卷号:
19(14)
页面范围:
883-890
是否译文:
发表时间:
2015-07-29