CN

白博峰

教授    Supervisor of Doctorate Candidates    Supervisor of Master's Candidates

  • E-Mail:
  • Education Level:With Certificate of Graduation for Doctorate Study

Papers

Current position: Home > Research > Papers

An improved method of gas well deliquification using supersonic nozzle

Release Time:2025-04-30
Hits:
Date:
2025-04-30
Title of Paper:
An improved method of gas well deliquification using supersonic nozzle
Journal:
International Journal of Heat and Mass Transfer
Summary:
Liquid loading from condensed fluids will cause the gas to flow intermittently, sharply reduce the production, which may completely stops. However, the currently existing gas well deliquification technologies are not competitive due to the large volume and extremely high operation expenses. The approach is thus proposed in this paper by establishing the liquid atomization through a supersonic nozzle in high-speed gas environments. The natural-gas condensate and water are therefore pushed into a moving stream of gas where they are broken up into small droplets and flushed away. This approach is especially suited for low-pressure and low-yielding wells. Numerical and experimental studies are firstly performed to determine the optimal nozzle structure. The exit velocity can reach 5–6 times the speed of sound. As expected, the magnitude of the gas velocity determines the droplet size, which ranges from 10 lm to 50 lm in most circumstances and is far less than the minimum threshold for being discharged. A year-long field test on three producing gas wells is conducted to validate the applicability of this method, the water and condensates build-up are removed completely to maintain the long-term stability and productivity in gas production. Also, this method enables to extend the useful life of equipment, reduce downtime and maximize the production capabilities.
Co-author:
Peng Chang*, Bofeng Bai
Volume:
2017,108, Part B
Page Number:
2262-2272
Translation or Not:
No
Date of Publication:
2017-01-31